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ABSTRACT 
 

Wavelets have been used in numerous geophysical studies but few have examined 

their applicability to underwater acoustic signals.  Wavelet transforms can remove noise 

from a given time series and allow data analysis at multiple levels of resolution.  This 

unique ability is exercised as a feasible application to the signals in this thesis: a 

reflected/scattered signal from a swimbladder-bearing fish, alewife (Alosa 

pseudoharengus), and several Odontocetes vocalizations.  Both stud ies reveal that 

wavelet-based techniques show potential in providing viable information for these 

acoustic signals despite the lack of statistical analysis.  The alewife portion shows a 

reasonable first order approximation to the absolute target strength and to the time delay 

correlation caused by the spatial separation of scattering features in the fish.  The marine 

mammal application shows a possible real time method to estimate the mammal’s range 

using the root mean square (RMS) energy of the decomposed signal.  Because of wavelet 

function mismatch, both studies conclude that more extensive research is necessary to 

develop these techniques into systematic processes.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 



 vi 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 



 vii 

TABLE OF CONTENTS 
 

I. INTRODUCTION........................................................................................................1 

II. BACKGROUND ..........................................................................................................3 
A.  HISTORY.........................................................................................................3 
B. FOURIER THEORY.......................................................................................4 

1. Fourier Analysis ...................................................................................4 
2. Fourier Transform...............................................................................5 
3. Short-Time Fourier Transform ..........................................................5 
4. Short-Time Fourier Transforms Versus Wavelet Transforms .......7 

III. WAVELET THEORY...............................................................................................11 
A.  CONTINUOUS WAVELET TRANSFORM ..............................................11 

1. CWT Scalogram.................................................................................13 
2. Dilation................................................................................................13 
3. Translation..........................................................................................16 
4. Inverse CWT ......................................................................................17 

B. DISCRETE WAVELET TRANSFORM.....................................................17 
1. Mother Wavelet..................................................................................19 
2. Scaling Function.................................................................................20 
3. DWT Implementation........................................................................20 
4. Signal Reconstruction........................................................................22 

C.  WAVELET TYPES .......................................................................................23 
1. Mexican Hat........................................................................................23 
2. Morlet..................................................................................................24 
3.  Haar.....................................................................................................25 
4.  Daubechies..........................................................................................26 
5.  Symmlets .............................................................................................27 

IV.  CHOOSING THE PROPER WAVELET...............................................................29 
A.  WAVELET PROPERTIES...........................................................................29 

1.  Orthogonal Versus Nonorthogonal Wavelets..................................29 
2.  Real Versus Complex Wavelets ........................................................30 
3.  Smooth Versus Irregular Wavelets ..................................................31 
4.  Symmetric Versus Antisymmetric Wavelets ...................................31 

B. WAVELET PARAMETERS ........................................................................32 
1.  Localization.........................................................................................32 
2.  Scales...................................................................................................32 

C.  WAVELET CHOICE....................................................................................33 

V.  ALEWIFE STUDY....................................................................................................35 
A.  BACKGROUND ............................................................................................35 
B. ACOUSTIC DATA ACQUISITION............................................................38 
C.  METHODOLOGY ........................................................................................41 

1. Absolute Target Strength..................................................................41 
2. Multi-level Decomposition.................................................................45 



 viii 

D. RESULTS .......................................................................................................46 
1. Scalograms ..........................................................................................46 
2. Absolute Target Strength..................................................................51 
3. Multi-level Decomposition.................................................................55 

E. DISCUSSION .................................................................................................63 
1. Scalograms ..........................................................................................63 
2. Absolute Target Strength..................................................................64 
3. Multi-level Decomposition.................................................................67 

F. FUTURE RESEARCH..................................................................................68 

VI. MARINE MAMMAL STUDY..................................................................................71 
A.  BACKGROUND ............................................................................................72 
B. METHODOLOGY ........................................................................................74 

1. Time Difference of Arrival (TDOA).................................................78 
2. Multi-level Decomposition.................................................................80 

C.  RESULTS .......................................................................................................80 
D. DISCUSSION .................................................................................................89 
E. FUTURE RESEARCH..................................................................................92 

VII. CONCLUSION ..........................................................................................................93 

LIST OF REFERENCES ......................................................................................................95 

BIBLIOGRAPHY..................................................................................................................97 

INITIAL DISTRIBUTION LIST.........................................................................................99 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 ix 

LIST OF FIGURES 
 

Figure 2.1: Representation of the sliding window function for the Short-Time Fourier 
transform, the time-frequency grid, and coverage of the time-frequency 
grid (From Graps, 1995). ...................................................................................6 

Figure 2.2: Characteristic shapes of the (a) Short-Time Fourier transform analyzing 
functions, ,fg τ  and (b) wavelet analyzing functions, ,λ τΨ  along the time (t) 
axis (From Daubachies, 1992). ..........................................................................7 

Figure 2.3: Representation of the basis functions for the Daubechies wavelet, time-
frequency grid, and coverage of the time-frequency grid (From Graps, 
1995). .................................................................................................................8 

Figure 3.1: Comparison of the STFT spectrogram and the CWT scalogram (From 
Barsanti, 1996) .................................................................................................13 

Figure 3.2: Time-frequency cells for ( ), tλ τΨ shown for a fixed τ  and three different 
values ofλ .  The mother wavelet and its Fourier transform are centered at 

0t and 0ω respectively (From Rao & Bopardikar, 1998). .................................17 
Figure 3.3: Example of a DWT at various scales J and positions k (From Barsanti, 

1996). ...............................................................................................................19 
Figure 3.4: Schematic representation of the DWT filtering and downsampling 

operations on the signal x ( n ). .........................................................................21 
Figure 3.5:  Signal x (n ) decomposition at higher scales of J. ...........................................21 
Figure 3.6: The Mexican hat wavelet (From Rao & Bopardikar, 1998). ...........................24 
Figure 3.7:   Real-value Morlet wavelet (From Rao & Bopardikar, 1998). .........................25 
Figure 3.8: Depiction of the Haar wavelet (From Graps, 1995). .......................................26 
Figure 3.9: Depiction of the Daubechies wavelet (From Chui, 1992). ..............................27 
Figure 3.10: Depiction of the Symmlet wavelet (From Graps, 1995). .................................28 
Figure 5.1: Schematic representation of the laboratory system used in measuring the 

acoustic backscattering by live, individual alewife as a function of angle 
orientation and frequency (From Reeder et. al., 2004). ...................................37 

Figure 5.2: Phase-contrast x-ray (PCX) of an alewife.  This extremely high-resolution 
imaging technique is sensitive to, and illustrates well, the small-scale 
anatomical features of the alewife such as fins, ribs, striations in muscle 
tissue, gills, and weakly scattering soft tissue (From Reeder et al., 2004). .....38 

Figure 5.3: Broadband chirp signals of the transmitted calibration voltage signal ( T
calv ) 

(left) and the received calibration voltage signal ( R
calv ) (right) used during 

the calibration process.  The transmitted signal waveform ( T
bsv ) was also 

used during the scattering experiment (From Reeder et al., 2004)..................40 
Figure 5.4: Normalized compressed pulse output (CPO) of R

bsv , target strength, and the 
PWTS of the alewife at three different orientations (one ping per 
orientation) in the lateral plane.  The target strength (TS) was computed 
from the whole time series (thin lines in the plots on the right) and the 
PWTS (thick lines in the plots on the right) was computed from the thick-



 x 

lined (time-gated) portions of the time series on the left (From Reeder et 
al., 2004). .........................................................................................................42 

Figure 5.5: Normalized CPO of R
bsv , target strength, and PWTS for the alewife in the 

lateral plane at the same oblique angle of orientation, but representing 
processing of different segments of the CPO.  The top pair of plots is the 
same as the bottom pair in Fig 5.10 for reference, while the lower two 
rows illustrates the characteristics of the separate arrivals (From Reeder et 
al, 2004). ..........................................................................................................43 

Figure 5.6: The scalogram of the received backscattered signal ( R
bsv ) at the normal 

incidence angle using the Morlet wavelet.  The colorbar (right) 
corresponds to the minimum and maximum coefficient amplitudes.  Scales 
are displayed inversely (y-axis) to correspond with the frequency band, 
40-95 kHz, from Reeder et al. (2004). .............................................................46 

Figure 5.7:  The scalogram of the received backscattered signal ( R
bsv ) at the normal 

incidence angle using the Mexican hat wavelet.  The colorbar (right) 
corresponds to the minimum and maximum coefficient amplitudes.  Scales 
are displayed inversely (y-axis) to correspond with the frequency band, 
40-95 kHz, from Reeder et al. (2004). .............................................................47 

Figure 5.8: The scalogram of the received backscattered signal ( R
bsv ) at the near 

normal incidence angle using the Morlet wavelet.  The colorbar (right) 
corresponds to the minimum and maximum coefficient amplitudes.  Scales 
are displayed inversely (y-axis) to correspond with the frequency band, 
40-95 kHz, from Reeder et al. (2004). .............................................................48 

Figure 5.9: The scalogram of the received backscattered signal ( R
bsv ) at the near 

normal incidence angle using the Mexican hat wavelet.  The colorbar 
(right) corresponds to the minimum and maximum coefficient amplitudes.  
Scales are displayed inversely (y-axis) to correspond with the frequency 
band, 40-95 kHz, from Reeder et al. (2004). ...................................................49 

Figure 5.10: The scalogram of the received backscattered signal ( R
bsv ) at the oblique 

incidence angle using the Morlet wavelet.  The colorbar (right) 
corresponds to the minimum and maximum coefficient amplitudes.  Scales 
are displayed inversely (y-axis) to correspond with the frequency band, 
40-95 kHz, from Reeder et al. (2004). .............................................................50 

Figure 5.11: The scalogram of the received backscattered signal ( R
bsv ) at the oblique 

incidence angle using the Mexican hat wavelet.  The colorbar (right) 
corresponds to the minimum and maximum coefficient amplitudes.  Scales 
are displayed inversely (y-axis) to correspond with the frequency band, 
40-95 kHz, from Reeder et al. (2004). .............................................................50 

Figure 5.12: Target strength of R
bsv  at normal incidence as a function of scales using the 

Morlet wavelet.  Scales are displayed inversely (x-axis) to correspond with 
the frequency band, 40-95 kHz, from Reeder et al. (2004). ............................51 



 xi 

Figure 5.13: Target strength of R
bsv  at normal incidence as a function of scales using the 

Mexican hat wavelet.  Scales are displayed inversely (x-axis) to 
correspond with the frequency band, 40-95 kHz, from Reeder et al. 
(2004). ..............................................................................................................52 

Figure 5.14: Target strength of R
bsv  at near normal incidence as a function of scales 

using the Morlet wavelet.  Scales are displayed inversely (x-axis) to 
correspond with the frequency band, 40-95 kHz, from Reeder et al. 
(2004). ..............................................................................................................52 

Figure 5.15: Target strength of R
bsv  at near normal incidence as a function of scales 

using the Mexican hat wavelet.  Scales are displayed inversely (x-axis) to 
correspond with the frequency band, 40-95 kHz, from Reeder et al. 
(2004). ..............................................................................................................53 

Figure 5.16: Target strength of R
bsv  at oblique incidence as a function of scales using the 

Morlet wavelet.  Scales are displayed inversely (x-axis) to correspond with 
the frequency band, 40-95 kHz, from Reeder et al. (2004). ............................53 

Figure 5.17: Target strength of R
bsv  at oblique incidence as a function of scales using the 

Mexican hat wavelet.  Scales are displayed inversely (x-axis) to 
correspond with the frequency band, 40-95 kHz, from Reeder et al. 
(2004). ..............................................................................................................54 

Figure 5.18: Multi- level decomposition for 8J =  levels of the received backscattered 
signal, R

bsv , at normal incidence using the Daubechies wavelet.  The plots 
on the left are the low frequency content of the signal while the plots on 
the right are the high frequency content...........................................................56 

Figure 5.19: Multi- level decomposition for 8J =  levels of the received backscattered 
signal, R

bsv , at normal incidence using the Symmlet wavelet.  The plots on 
the left are the low frequency content of the signal while the plots on the 
right are the high frequency content. ...............................................................57 

Figure 5.20: Multi- level decomposition for 8J =  levels of the received backscattered 
signal, R

bsv , at near normal incidence using the Daubechies wavelet.  The 
plots on the left are the low frequency content of the signal while the plots 
on the right are the high frequency content......................................................58 

Figure 5.21: Multi- level decomposition for 8J =  levels of the received backscattered 
signal, R

bsv , at near normal incidence using the Symmlet wavelet.  The 
plots on the left are the low frequency content of the signal while the plots 
on the right are the high frequency content......................................................59 

Figure 5.22: Multi- level decomposition for 8J =  levels of the received backscattered 
signal, R

bsv , at oblique incidence using the Daubechies wavelet.  The plots 
on the left are the low frequency content of the signal while the plots on 
the right are the high frequency content...........................................................60 

Figure 5.23: Multi- level decomposition for 8J =  levels of the received backscattered 
signal, R

bsv , at oblique incidence using the Symmlet wavelet.  The plots on 



 xii 

the left are the low frequency content of the signal while the plots on the 
right are the high frequency content. ...............................................................61 

Figure 5.24: Depiction of the standard Gaussian function in Eqn. 5.4. ...............................65 
Figure 5.25: Scalogram of the standard Gaussian function in Eqn. 5.4. ..............................66 
Figure 5.26: Wavelet spectrum ( )P f of the standard Gaussian function in Eqn. 5.4..........66 
Figure 5.27: Depiction of the two largest peaks of the normalized compressed pulse 

output (CPO) as correlated to the spatial separation of the skull and 
swimbladder of the alewife used in the experiment (From Reeder et al., 
2004). ...............................................................................................................67 

Figure 6.1: Geographic location of San Clemente Island (From Sturgeon, 2002). ............72 
Figure 6.2: Location of hydrophones on the SOAR relative to SCI. .................................74 
Figure 6.3: Close-up of the numbered hydrophones on the SOAR. ...................................75 
Figure 6.4: Spectrogram of Clip 1 received August 12, 2004, on H71 at 0501 GMT. ......75 
Figure 6.5: Spectrogram of Clip 2 received August 12, 2004, on H71 at 0503 GMT. ......76 
Figure 6.6: Spectrogram of Clip 3 received August 12, 2004, on H71 at 0505 GMT. ......76 
Figure 6.7: Spectrogram of Clip 4 received August 12, 2004, on H71 at 0612 GMT. ......77 
Figure 6.8: Spectrogram of Clip 5 received August 12, 2004, on H70 at 0613 GMT. ......77 
Figure 6.9: Spectrogram of Clip 6 received August 12, 2004, on H70 at 0614 GMT. ......78 
Figure 6.10: Example of expected TDOA ( et∆ ) calculations for a given grid point. ..........79 
Figure 6.11: Mammal’s position (clips 1 through 6) relative to the hydrophones. ..............81 
Figure 6.12: Multi- level decomposition for 16J =  levels of clip 1 using the Haar 

wavelet.  The plots on the left are the low frequency content of the signal 
while the plots on the right are the high frequency content. ............................83 

Figure 6.13: Multi- level decomposition for 16J =  levels of clip 2 using the Haar 
wavelet.  The plots on the left are the low frequency content of the signal 
while the plots on the right are the high frequency content. ............................84 

Figure 6.14: Multi- level decomposition for 16J =  levels of clip 3 using the Haar 
wavelet.  The plots on the left are the low frequency content of the signal 
while the plots on the right are the high frequency content. ............................85 

Figure 6.15: Multi- level decomposition for 16J =  levels of clip 4 using the Haar 
wavelet.  The plots on the left are the low frequency content of the signal 
while the plots on the right are the high frequency content. ............................86 

Figure 6.16: Multi- level decomposition for 16J =  levels of clip 5 using the Haar 
wavelet.  The plots on the left are the low frequency content of the signal 
while the plots on the right are the high frequency content. ............................87 

Figure 6.17: Multi- level decomposition for 16J =  levels of clip 6 using the Haar 
wavelet.  The plots on the left are the low frequency content of the signal 
while the plots on the right are the high frequency content. ............................88 

Figure 6.18: Root mean square (RMS) energy of each clip versus range of the mammal 
from the hydrophone.  The first point is the RMS energy of the 
vocalization received on the closest hydrophone; the second point is the 
RMS energy received on the next closest hydrophone, and so on. ..................89 

Figure 6.19: Beam pattern of three components of clicks recorded from a tagged sperm 
whale (From Zimmer et al., 2005). ..................................................................90 

 



 xiii 

 
ACKNOWLEDGMENTS 

 
Special thanks to CDR Ben Reeder and Professor John Colosi for their support 

and guidance throughout this challenging project.  Your intellect and devotion to 

acoustics truly stirred my scientific curiosity and motiva ted me to explore every avenue 

in search of the true answer. 

Special thanks to CDR Carl Hager and Ryan Kinnett for their extreme patience 

and extensive support in the marine mammal study.  Your intellect and devotion to 

marine mammal research truly stimulated my environmental awareness and further 

enhanced my dedication to protecting these animals.    

Special thanks to Professor Monique Farques for her patience and knowledge of 

wavelets.  Your ideas and suggestions truly put us closer to the results we were 

anticipating. 

Special thanks to Fred Bahr for his knowledge of wavelets and their applications 

using MATLAB.  Without your help, I would not have been able to come as far as I did 

on this project.  I am truly grateful for your patience and advice throughout this entire 

study. 

Special thanks to my son, Cody, for his love and support which inspired me every 

day to see this project through to the end.  Your laughter and smile truly reminded me 

that any challenge can be overcome by optimism.   

 
  

 
 
 
 

 



 xiv 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 



1 

I. INTRODUCTION  

Wavelet analysis is gradually becoming a useful tool for analyzing localized 

variations of energy within a given time series.  Originating in the early 1980s for 

geophysical applications, wavelet analysis allows researchers to isolate and manipulate 

specific types of trends or patterns hidden in massive amounts of data.  By decomposing 

the time series into frequency-time space, researchers are able to determine the dominant 

forms of variability and their variations in time.   

 While the wavelet transform has been used in numerous geophysical studies, 

including tropical convention, El Nino-Southern Oscillation, the dispersion of ocean 

waves, wave growth and breaking, and coherent structures in turbulent flows, few studies 

have examined the usefulness of wavelet transforms on underwater acoustic signals.   

Wavelet transforms provide a valuable tool in the removal of noise from a given 

time series and allow data analysis at multiple levels of resolution.  In the process of 

removing noise, wavelet transforms provide a large variety of flexible basis functions 

which allow the signal to be projected into a coordinate system where its characteristics 

are distinguishable from that of the noise.  Additionally, allowing data analysis at 

multiple levels of resolution makes wavelet transforms unique since they permit the user 

to selectively focus on local signal features or to take global views of the proposed signal 

to be analyzed.   

The unique ability of these transforms is particularly relevant to the two types of 

acoustic signals studied in this thesis.  The first signal type is composed of the reflected 

scattered signal from a swimbladder-bearing fish, alewife (Alosa pseudoharengus), which 

is a short duration broadband transient.  The second signal type is composed of several 

marine mammal vocalizations from the cetacean suborder Odontocetes, which are short 

duration narrowband tonals. 

The purpose of this thesis is an attempt to establish the wavelet process in 

bioacoustic scattering and marine mammal vocalization itself, not the statistical 

efficiency of the process.  The wavelet denoising and feature extraction methods used in 

this study are an extension to, and combination of, methods found throughout various 
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geophysical and signal processing literatures.  Chapter II will discuss the brief history of 

how wavelet analysis came about, an overview of Fourier theory, and the comparison 

between Fourier transforms and wavelet transforms.  Chapter III will give an overview of 

wavelet theory discussing the two types of wavelet transforms.  Chapter IV will briefly 

discuss the methodology in choosing the appropriate for wavelet function for a given data 

set and the proposed wavelet applications to the data in this study.  Chapter V 

encompasses the entire alewife study from data collection to discussion of the results.  

Similarly, Chapter VI encompasses the entire marine mammal study.  Chapter VII 

provides a summary and conclusions.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 

 II. BACKGROUND  

A. HISTORY 

Geophysical processes are often generated by complex mechanisms which are 

difficult to characterize.  The predictable behavior in such systems such as trends and 

periodicities are therefore of major interest.  Traditional mathematical methods such as 

Fourier analysis examine periodicities in the frequency domain, implicitly assuming the 

underlying processes are stationary in time.  However, many of these underlying 

processes are nonstationary in time and require resolution into a spectrum of frequencies.  

Many believed that the appropriate solution to this intricate dilemma was the Fourier 

transform.  In fact, during the nineteenth century, Fourier transforms solved many 

problems in physics and engineering which led scientists and engineers to think of them 

as the preferred way to analyze phenomena of all types. 

The major drawback of the Fourier transform, as recognized later in the twentieth 

century by mathematicians, physicists, and engineers, is that Fourier transforms have 

trouble reproducing transient signals or signals with abrupt changes.  In 1927, the 

physicist Werner Heisenberg illustrated the principle underlying this problem known as 

the Heisenberg Indeterminacy Principle (Mackenzie, 2001).  He stated that the position 

and the velocity of an object cannot be measured exactly at the same time.  In order to 

know its frequency, the signal must be dilated in time by a basis function, or vice versa.  

Therefore, in signal processing terms, it means it is impossible to know simultaneously 

the exact frequency and the exact time of occurrence of this frequency in a signal 

(Mackenzie, 2001).    

Therefore, the relatively recent development of wavelets has been considered a 

solution to overcome the shortcomings of the Fourier transform.  In general, the 

disadvantage of Fourier expansion only allows frequency resolution and no time 

resolution.     The fundamental idea of wavelet analysis is to simultaneously capture the 

low resolution background signal and the high resolution individual, localized variations, 

a concept which has completely fascinated the scientific, engineering, and mathematics 

communities.  Ultimately, the versatile applicability of wavelets means adopting a whole 

new perspective in processing data. 
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However, in order to properly distinguish the advantages of wavelet transforms 

over Fourier transforms, it is important to recognize that wavelet analysis is easiest to 

understand as an extension of the more familiar Fourier analysis.  Therefore, the 

remainder of this chapter briefly discusses Fourier theory before leading into the 

discussion of wavelet theory in chapter III. 

B. FOURIER THEORY 

1. Fourier Analysis 

From Fourier theory, a signal can be expressed as the sum of an infinite series of 

sines and cosines, commonly referred to as a Fourier expansion.  Therefore, any periodic 

function ( )x t  with a period of 0T  can be expressed as: 

( ) ( )0 0 0
1

cos 2 sin(2 )n n
n

x t a a nf t b nf tπ π
∞

=

= + +  ∑ ,            (2.1) 

where 0 01f T=  is the fundamental frequency.  The term 0nf  represents the thn harmonic 

of the fundamental frequency.  The coefficients na and nb represent the amplitudes of the 

cosine and sine terms at the thn  harmonic of the fundamental frequency and the 

coefficient 0a  represent the mean value of the periodic signal ( )x t  over one complete 

period.   

 Equivalently, the Fourier series of Eqn. 2.1 can be written in terms of complex 

exponentials by substituting the exponential forms of the sine and cosine into equation 

(2.1) to produce the equivalent complex exponential Fourier series: 

( ) 02j nf t
n

n

x t C e π
∞

=−∞

= ∑ .                                       (2.2) 

The terms nC  are the complex Fourier coefficients, and are indicative of the complex 

weights of the thn  harmonic of the complex basis function, 02j n f te π .  These complex 

coefficients are found from the analysis equation: 

  ( )
0

0

0

2
2

0
2

1
T

j nf t
n

T

C x t e dt
T

π−

−

=   ∫     0, 1, 2, 3....n = ± ± ±                       (2.3) 

Eqn. 2.3 provides the necessary coefficients to exactly reconstruct the periodic signal 

from its Fourier series expansion.  Furthermore, a magnitude spectrum of the periodic 
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signal ( )x t  can be created by plotting the magnitude of nC  versus frequency, providing a 

frequency domain presentation of the signal. 

2. Fourier Transform 

 Analogous to Eqn. 2.3, the Fourier transform of a general continuous function 

( )x t  is: 

  ( ) ( ) 2j ftX f x t e dtπ
∞

−

−∞

=   ∫ ,      (2.4) 

where ( )X f is a continuous function of the frequency variable f .  Eqn. 2.4 can be 

derived from Eqn. 2.3 by representing ( )x t  as a periodic function with infinite period 

and taking the limit as 0T → ∞ .  Since ( )X f  is continuous, its magnitude spectrum will 

also be continuous and can be created by plotting the magnitude of ( )X f  versus 

frequency.   

 The original signal ( )x t  can be reconstructed from ( )X f using the inverse 

Fourier transform: 

  ( ) ( ) 2j ftx t X f e dfπ
∞

−∞

=  ∫ .    (2.5) 

The two functions, ( )x t  and ( )X f , are commonly known as a Fourier transform pair. 

3. Short-Time Fourier Transform 

When a signal is nonstationary, it is advantageous to have a depiction of the 

signal that involves both time and frequency.  However, the Fourier analysis techniques 

described above provides only a frequency domain representation of the signal and can 

only be applied to signals whose frequency structure is stationary in time. 

An extension of the Fourier transform designed to map a signal into a two-

dimensional time-frequency space is the Short-Time Fourier Transform (STFT).  The 

STFT segments a signal into small uniform blocks of time using a sliding window 

function, ( ), fg tτ .  Each block is made short enough so that the signal can be considered 

stationary within that segment.  The Fourier transform is then applied to each time 

segment to produce the STFT representation specified by: 
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 ( ) ( ) ( ) 2
,, j ft

fS f x t g t e dtπ
ττ τ

∞
−

−∞

=  −   ∫ ,   (2.6) 

where ( ),S fτ  displays the evolution of the signal’s frequency information over time.  

The plot of the squared magnitude of ( ),S fτ  is called a spectrogram and depicts the 

signal energy in the time-frequency plane. 

 In practice, many different window functions may be selected which ultimately 

affect the resulting STFT.  The shape of the chosen window function will determine the 

resolution of the time information ( τ∆ ) in the time-frequency plane.  Due to the 

uncertainty principle, the time resolution and the frequency resolution ( f∆ ) of a given 

signal are inversely related.  This produces a trade-off between time resolution and 

frequency resolution.  Because the choice of window fixes τ∆  over the entire signal 

length (and also thus f∆ ), the STFT partitions the time-frequency plane into a uniform 

grid. 

 
 

Figure 2.1: Representation of the sliding window function for the Short-Time Fourier 
transform, the time-frequency grid, and coverage of the time-frequency grid (From 
Graps, 1995). 
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 The shortcomings of this property is that both τ∆  and f∆ are fixed throughout the 

analysis of the signal, and cannot simultaneously provide both good time resolution and 

good frequency resolution, which require short windows and long windows, respectively. 

4. Short-Time Fourier Transforms Versus Wavelet Transforms  

The difference between the wavelet and the Short-Time Fourier transform (STFT) 

lies in the shapes of the analyzing functions, ,fg τ and ,λ τΨ .  

 
Figure 2.2: Characteristic shapes of the (a) Short-Time Fourier transform analyzing 
functions, ,fg τ  and (b) wavelet analyzing functions, ,λ τΨ  along the time (t) axis (From 
Daubachies, 1992). 

 

The functions ,fg τ  all consist of the same envelope function g , translated to the proper 

location along the time axis, and “filled in” with higher frequency oscillations 

(Daubachies, 1992).  Regardless of the value of f , all ,fg τ  have the same width in the t 

direction.  In comparison, the ,λ τΨ have time-widths adapted to their frequency.  High 

frequency ,λ τΨ  are very narrow, while low frequency ,λ τΨ  are much broader.   

Recall that the STFT segments a signal into small uniform blocks of time made 

short enough so that the signal can be considered stationary within that segment.  
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Wavelets, on the other hand, segment a signal with a fully scalable modulated window 

which allows for recognition of nonstationary signals within that segment.  Consequently, 

the wavelet transform is better able than the STFT to focus on very short- lived, high 

frequency phenomena such as transients in signals. 

 The spectrum is calculated for every position as the window is shifted 

along the signal. This process is repeated many times with slightly shorter (or longer) 

windows.  The final result is a collection of time-frequency representations of the signal, 

all with different resolutions.  

 
Figure 2.3: Representation of the basis functions for the Daubechies wavelet, time-
frequency grid, and coverage of the time-frequency grid (From Graps, 1995).  

 
 
This type of analysis can be thought of as multi-resolution analysis. In the case of 

wavelets, the time-frequency representations are actually time-scale representations 

because the scale in a way is the inverse of frequency since the term frequency is 

reserved for the Fourier trans form.  Although scale is the more general term in wavelet 

analysis, scale will be used interchangeably with frequency throughout the remainder of 

this thesis for convenience.  

In general, in addition to overcoming the shortcomings of the STFT with a fully 

scalable modulated window, there are different shaped wavelets that more closely 

resemble transient signals and in turn are better able to represent, or decompose, 

transients of different shapes and types.  Some of the various wavelets will be discussed 
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later in chapter III as well considerations for choosing the proper wavelet for a given data 

set. 

The fundamental concept of wavelet analysis is to analyze data according to scale.  

Wavelet algorithms process data at different scales or resolutions: if a signal or function 

is examined through a large window, the gross features are revealed and, similarly, 

examining the signal or function through a small window will reveal small-scale features.   

In general, the wavelet analysis procedure begins with adopting a wavelet 

prototype function, ,λ τΨ , commonly known as an analyzing wavelet or mother wavelet.  

Temporal analysis is performed with a contracted, high-frequency version of the 

prototype wavelet, while frequency analysis is performed with a dilated, low-frequency 

version of the same wavelet.  Therefore, each tile of the time-frequency plane represents 

a single wavelet coefficient computed by applying a basis function centered on that area 

with the correct aspect ratio between time span and bandwidth. 

Because the original signal or function can be represented in terms of a linear 

combination of the weighted sum of the wavelet functions, data operations can be 

performed using just the wavelet coefficients.  Additionally, if one further chooses the 

wavelets best adapted to the data, or removes the coefficients below a certain threshold, 

the data will be scarcely represented, which makes wavelets an excellent tool in the field 

of data compression. 
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III. WAVELET THEORY  

There are two distinct classes of wavelet transforms: the continuous wavelet 

transform (CWT) and the discrete wavelet transform (DWT).  The discrete wavelet 

transform is a compact representation of the data and is particularly useful for noise 

reduction and data compression, whereas the continuous wavelet transform is better for 

feature extraction purposes.  The remainder of this chapter will discuss the CWT and the 

DWT in depth and explain their respective applicability in data analysis. 

A. CONTINUOUS WAVELET TRANSFORM 

The continuous wavelet transform of a function ( )x t  is defined as the integral 

transform  

 ( ) ( ) ( ),,  =  x  C t t dtλ τλ τ
∞

∗

− ∞

Ψ∫       0λ > ,                     (3.1) 

where 

     ( ), ,

1
  

t
tλ τ λ τ

τ
λλ

∗ − Ψ ≡ Ψ  
 

                   (3.2) 

 

represents a family of functions called wavelets.  In both equations, λ  is a scale 

parameter, τ  is a location parameter on the time axis, and ( ), tλ τ
∗Ψ is the complex 

conjugate of ( ), tλ τΨ , the mother wavelet.  Changing the value of λ  can either have a 

dilating effect ( )1λ >  or a contracting effect ( )1λ <  on ( ), tλ τΨ , and changing τ  

translates the function ( )x t  along the time axis.    When the scale λ  decreases, the 

wavelet becomes more compressed and takes only short time behavior of ( )x t  in 

account; when the scale λ  increases, the wavelet becomes more dilated and considers the 

behavior of ( )x t  over a larger time increment.  Therefore, the wavelet transform 

provides a flexible time-scale window that is small for analyzing small-scale features and 

large for analyzing large-scale features. 
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One important note is that ( ), tλ τΨ has the same shape for all values of λ .  In 

addition, lower scales (smaller values of λ ) correspond to high frequency wavelets and 

provide good time resolution.  Higher scales (larger values ofλ ) correspond to low 

frequency wavelets with poor time resolution but good frequency resolution.  Therefore, 

in general, the wavelet transform may be considered a mathematical microscope, where 

the magnification is given by 1 λ  and the optics are given by the choice of wavelet 

( ), tλ τΨ . 

The continuous wavelet transform as defined by Eqn. 3.1 is commonly known as 

“continuous” because the scale and time parameters λ  and τ  assume continuous values.   

The CWT of a function at any arbitrary scale λ  and location τ  is obtained by the same 

basis function as obtained at other scales and locations.  Therefore, this type of wavelet 

transform provides a redundant representation of the signal.  Although this transformation 

is infinitely redundant in theory, it can be useful in recognizing certain characteristics of a 

signal.   

Since the wavelet, ( ), tλ τΨ , is a function with unit energy, or ( )
2

, 1t dtλ τΨ  =∫ , it 

has two important properties.  The wavelet, ( ), tλ τΨ , is chosen so that it has compact 

support, or sufficiently fast decay, to obtain localization in space.  In other words, 

( ), tλ τΨ  must be a function centered on zero and in the limit as t  → ∞ , ( ), 0tλ τΨ →  

rapidly.  This condition produces the local nature of wavelet analysis. Additionally, the 

wavelet, ( ), tλ τΨ , also has to have zero mean, or ( ), 0t dtλ τ

∞

−∞

Ψ  =∫ , which is known as the 

admissibility condition of the wavelet.  Collectively, these properties ensure that ( ), tλ τΨ  

is a wavelet: the first property ensures that ( ), tλ τΨ  is not a sustaining wave, while the 

second property ensures that ( ), tλ τΨ  is wave- like.   Also, in Eqn. 3.2, the normalizing 

constant, 1 λ , is chosen so that ( ), tλ τΨ  has the same energy for all scales λ , 

or ( ) 2

, t dtλ τ

∞

−∞

 Ψ  < ∞∫ . 
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1. CWT Scalogram 

 Comparing the time-frequency mapping of the STFT and the CWT, the STFT 

produces a uniform grid with a constant time resolution and frequency resolution, while 

the CWT has time resolution and frequency resolution that depend on the scale.  Figure 

3.3 below depicts the time-frequency grids of the STFT and the CWT. 

 
Figure 3.1: Comparison of the STFT spectrogram and the CWT scalogram (From 
Barsanti, 1996) 

 
Similar to the STFT spectrogram, the CWT scalogram is defined as the squared 

magnitude of the complex coefficients, ( , )C tλ , and it is a measure of the energy of the 

signal in the time-scale plane (Barsanti, 1996).   A scalogram provides an unfolding of 

the characteristics of a process in the scale-space plane.  The presence of multiscale 

structures and their temporal locations are easily identified which can reveal some of the 

embedded small-scale features within the large-scale features. 

2. Dilation 

The CWT cannot always resolve events in frequency; the same holds true for 

resolving events in time.   Quantitative metrics for time and frequency resolution are 

based on the duration and bandwidth respectively of the mother wavelet, ( ), tλ τΨ  (Rao & 
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Bopardikar, 1998).  The first moment of a mother wavelet is given by (Rao & Bopardikar, 

1998, Eqn. 1.40) 

( )

( )

2

,

0
2

,

t t dt
t

t dt

λ τ

λ τ

∞

−∞
∞

−∞

 Ψ
≡

Ψ

∫

∫
                    (3.3) 

where ( ) ( )2 2

, ,t t dtλ τ λ τ

∞

− ∞

Ψ Ψ∫  acts like a probability density function.  Therefore, 0t  

provides a measure of the position at which ( ), tλ τΨ  is centered on the time axis. 

 Similarly, the first moment of ( ),λ τ ωΨ , the Fourier transform of ( ), tλ τΨ , 

makes it possible to find the center of the mother wavelet along the frequency axis, which 

is given by (Rao & Bopardikar, 1998, Eqn. 1.41) 

 

   
( )

( )

2

,

0
2

,

d

d

λ τ

λ τ

ω ω ω
ω

ω ω

∞

−∞
∞

−∞

 Ψ
≡

Ψ

∫

∫
                  (3.4) 

 The root mean square (RMS) duration of the wavelet is a measure of its duration 

or spread in time.  It is also known as the second moment of the wavelet about 0t , and is 

defined as (Rao & Bopardikar, 1998, Eqn. 1.42) 

   
( ) ( )

( )

22
0 ,

2

,

t t t dt
t

t dt

λ τ

λ τ

∞

−∞
∞

−∞

− Ψ
∆ ≡

Ψ

∫

∫
                 (3.5) 

 Similarly, the RMS bandwidth of the wavelet is given by (Rao & Bopardikar, 

1998, Eqn. 1.43) 
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( ) ( )

( )

22
0 ,

2

,

d

d

λ τ

λ τ

ω ω ω ω
ω

ω ω

∞

− ∞
∞

−∞

− Ψ
∆ ≡

Ψ

∫

∫
      (3.6) 

In order to have finite values for the integrals in the numerators in Eqns. 3.5 and 3.6, 

active decays in time and frequency are required for the wavelet and its transform.  If a 

function does not decay fast enough, alternative measures can be used such as an interval 

in which the length is equivalent to the substantial energy (approximately 95% of the 

total energy). 

 If tΨ∆ and ωΨ∆ are the RMS duration and bandwidth, respectively, of the mother 

wavelet, ( ), tλ τΨ , then the RMS duration of its dilation, ( ),0 tλΨ , is then 

( )t tλ λΨ Ψ∆ ≡ ∆ , and the corresponding bandwidth is ( )ω λ ω λΨ Ψ∆ ≡ ∆ .  Therefore, 

the product of the duration and the bandwidth is invariant to the dilation and can be 

represented as a constant cΨ : 

  ( ) ( )t t cλ ω λ ωΨ Ψ Ψ Ψ∆ ∆ = ∆ ∆ =    (3.7) 

This equation indicates that decreasing ( )t λΨ∆  results in an increase in ( )ω λΨ∆ , and 

vice versa.  The smaller ( )t λΨ∆ , the better the CWT is able to resolve events closely 

spaced in time; similarly, the smaller ( )ω λΨ∆ , the better the CWT is able to resolve 

events closely spaced in frequency.  At very small values of λ , the RMS duration of the 

corresponding dilated wavelet is small which allows the CWT to possess good time 

resolution (or the ability to separate very close events in time).  On the contrary, the 

frequency resolution is poor because the RMS bandwidth of the dilated wavelet is large.  

For large values ofλ , the exact opposite is true. 

 It is then worthy to note that the CWT time resolution improves and the frequency 

resolution degrades as frequency is increased.  Due to the reciprocal relationship between 

scale and frequency, the CWT provides better frequency resolution at the lower end of 

the frequency spectrum and poorer resolution at the higher end of the frequency 
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spectrum.  This ability to provide variable time-frequency resolution makes the wavelet 

transform a natural tool in the analysis of signa ls.   

3. Translation   

The CWT also involves the translation of the mother wavelet ( ), tλ τΨ , along the 

time axis.  Recall that the translation parameter,τ , affects only the location of the 

wavelet and not the duration or bandwidth.  From Eqn. 3.3, the first moment and, 

subsequently, the center of  ( ),0 tλΨ  are 0tλ .  Notice that if 0 0t ≠ , the location of 

( ),0 tλΨ depends on the value of λ .  Additionally, the first moment of ( ), tλ τΨ  is 0tλ τ+ .  

However, the second moment of ( ), tλ τΨ  about 0tλ τ+  is the same as the second 

moment of ( ),0 tλΨ  about 0tλ .  This indicates that the parameter τ  merely affects the 

location of the wavelet and not the RMS duration.  Also, the RMS bandwidth is not 

affected by τ  because translating a function does not affect the magnitude of its 

transform. 

Figure 3.2 shows the variation of time and frequency resolution as a function of 

λ using time-frequency cells.  Obtained from the first moments in time and frequency, the 

center of each rectangle indicates the position of the wavelet in time and frequency.  The 

rectangle itself bounds the spread of the wavelet in time and frequency as characterized 

by the corresponding second moments.   

Given an event at some point ( ),τ ω in the time-frequency plane, for any other 

event to be resolvable, it should be localized in the time-frequency plane outside the 

bounding rectangle of the time-frequency cell centered at ( ),τ ω  (Rao & Bopardikar, 

1998).  An alternative view associates the time-frequency cell centered at ( ),τ ω with an 

ambiguity in localizing events in time and frequency to within its bounding rectangle.  

From Eqn. 3.7, the area of each bounding rectangle is cΨ .  Recall that when the time 

frequency cell is narrow in time, it is wider in frequency.  Because this decrease in the 

uncertainty of time localization is accompanied by an increase in the uncertainty of 

frequency localization and vice versa, it is impossible to simultaneously reduce the 
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uncertainty in both directions.  Therefore, Eqn. 3.7 demonstrates the uncertainty principle 

governing the time-frequency resolution.  

 

Figure 3.2: Time-frequency cells for ( ), tλ τΨ shown for a fixed τ  and three different 

values ofλ .  The mother wavelet and its Fourier transform are centered at 0t and 

0ω respectively (From Rao & Bopardikar, 1998). 
 

4. Inverse CWT  

 The admissibility condition is useful in formulating an inverse continuous wavelet 

transform, which is defined by 

 

  ( ) ( ) ( )2
,

0

1
, tx t C t d dt

C λλ λ τ λ
∞ ∞

−

Ψ −∞

= Ψ∫ ∫ ,                  (3.8) 

 

where CΨ  is a constant depending on the choice of wavelet.  The inverse CWT 

reconstructs ( )x t  once its wavelet transform is known and is a superposition of 

wavelets, ( ), tλ τΨ .   

B. DISCRETE WAVELET TRANSFORM 

For a sampled signal, implementing a wavelet transform requires the scale and 

location parameters of the CWT be restricted to discrete values.  A wavelet transform 
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invoked on discrete values of scale and location is referred to as a discrete wavelet 

transform.  Using the appropriate choice of wavelet and discretization schemes, one can 

obtain the nonredundant representation of the sampled signal.  Therefore, the DWT of a 

discrete signal, ( )x n , is defined as (Barsanti, 1996, Eqn. 3.8) 

  ( ) ( )
1

1
,

N

n

n b
C a b x n

aa
∗

=

− =   Ψ  
 

∑ ,          (3.9) 

where a, b, and n are the discrete versions of λ , τ , and t of Eqns. 3.1 and 3.2, 

respectively.  In addition, the scaling factor is even further restricted to 

  0
Ja a=                   0,1,2,......J =                                   (3.10) 

The accuracy of the signal reconstruction is governed by the choice of 0a  via the inverse 

transform.  The most popular choice, 0 2a = , provides small reconstruction errors and 

permits the implementation of fast algorithms.  By setting 2Ja = , octave bands, known 

as dyadic scales, are produced.  As J increases, at each scale, the analysis wavelet is 

stretched in the time domain, and compressed in the frequency domain by a factor of two.   

Therefore, as a result, an increasing value of J produces more precise frequency 

resolution and less precise time resolution at each dyadic scale. 

 Moreover, as J increases, the translation term, b a  in Eqn. 3.9 where 2Ja = , 

becomes smaller and b must inevitably increase to cover all translations.  As a result, the 

DWT output grows in length by a factor of two at every scale, producing extremely large 

DWT vectors at the higher scales.  This computational difficultly is alleviated by 

realizing that at each successive octave, the DWT output contains information at half the 

bandwidth compared to that of the previous scale, and thus can be sampled at half the rate 

according to Nyquist’s rule (Barsanti, 1996).  To accomplish this decimation or 

subsampling mathematically, the values of the shift parameter b are restricted.  If 

2Jb k= ⋅ , where k is an integer, and a is replaced by2J , then the decimated DWT is 

given as 

  ( ) ( )( )
1

1
2 , 2 ( ) 2

2

N
J J J

J
n

C k x n n k∗ −

=

=   Ψ −∑ ,            (3.11) 
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where 20,.....logJ N=  and 1,...... 2Jk N= ⋅ .  In the argument of the DWT, the term 

2Jk ⋅ indicates that the coefficients are decimated by a factor of two at each successive 

scale J  by retaining only the even points.  As a result, the coefficients form a [ ]J k×  

matrix.  Consequently, each element in the coefficient matrix represents the correlation 

between the signal and the analysis wavelet at scale J and position k . Rewritten 

explicitly in terms of parameter J and k , Eqn. 3.6 then becomes  

  ( ) ( )( ),

1
2

2
J

J k J
n

C x n n k∗ −=   Ψ −∑  ,           (3.12) 

and is defined as the decimated DWT equation.  Figure 3.4 below shows an example of a 

discrete wavelet transform, the Symmlet 8 wavelet, at various scales J and positions k. 

 
Figure 3.3: Example of a DWT at various scales J and positions k (From Barsanti, 
1996). 

 
1. Mother Wavelet 

   Dilations and translations of the mother function, or analyzing wavelet, define 

an orthogonal basis, known as the wavelet basis function: 

( ) ( )( )2
, 2 2J J

J k n n k− −Ψ = Ψ − ,        (3.13) 

such that the set of functions ( ){ },J k nΨ for all J and k  form an orthonormal basis.  In 

addition, the variables J and k  are integers that scale and dilate the mother function 

,J kΨ to generate a family of discrete wavelets, such as the Daubechies or Symmlets 
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wavelet families.  The scale index J  indicates the wavelet’s width, and the location 

index k  gives its position. 

The most remarkable property of ( ){ },J k nΨ is that the functions are orthogonal to 

their translates and their dilates.  From Eqn. 3.13, the mother functions are rescaled, or 

“dilated” by powers of two and then translated by integers.  Due to the self-similarity 

caused by the scales and dilations, once the unknowns of the mother functions are 

resolved, everything is known about the basis function at the various J scales and k 

positions. 

2. Scaling Function 

To span the data domain at different resolutions, the analyzing wavelet, ( ),J k nΨ , 

is used in a scaling equation defined as 

( ) ( ), ,J k J k
J k

n C nϕ
∞ ∞

=−∞ =−∞

=  Ψ∑ ∑ ,                   (3.14) 

where ( )nϕ is the scaling function for the mother function ( ),J k nΨ , ,J kC  are the wavelet 

coefficients that give the discrete sampled values of ( )nϕ  at resolution J and location 

index k , and ( ),J k nΨ  is the smoothing function as defined in Eqn. 3.13.  Since 

( ) ( ), ,J k J kC n x n dn∗= Ψ   ∫ , the function ( ),J k n∗Ψ  acts as a sampling function and is 

referred to as the “scaling function” of the coefficients.  In addition, the first summation 

from J =−∞  to ∞   is over all scales (from small to large) and at each scale J, the sum 

from k = −∞  to ∞   operates over all translations.   

3. DWT Implementation 

The most useful feature of wavelets is its ready adaptation to a given problem.  

The defined coefficients for a given wavelet are thought of as filters which are placed in a 

transformation matrix that is applied to a raw data vector.  The coefficients are then 

ordered using two dominant patterns.  The first pattern works as a smoothing filter, 

similar to a moving average.  The other pattern works to bring out the data’s detailed 

information. 

The DWT of Eqn. 3.12 acts as a complementary pair of low pass (LP) and high 

pass (HP) filters.  These filters equally partition the frequency axis and are known as the 



21 

quadrature mirror filters (QMF) or analyzing filters (Barsanti, 1996).  The output of the 

LP filter contains the rough shape of the signal while the output of the HP filter contains 

the details of the signal.   

Each filter output only covers half the original frequency range of the input; 

therefore, both filter outputs can be decimated by a factor of two by retaining only the 

even points.  The combined decimated output of the LP and HP filters are data sets which 

comprise the DWT coefficients at the first scale.  Figure 3.5 depicts the method in which 

these QMF filters are implemented at scale 1J = .  Note that ( )c n  and ( )d n are the low 

pass and high pass output of the signal ( )x n .  

 
Figure 3.4: Schematic representation of the DWT filtering and downsampling 
operations on the signal x ( n ).   

 
By repeating this process on the LP filter output, the signal is further decomposed 

into the LPLP and LPHP parts at the next scale.  The filtering and decimating operations 

can be continued until the number of samples is reduced to two (Barsanti, 1996).  At each 

successive scale, the frequency range of the output is reduced in half by the LP filter, and 

the frequency resolution is improved by the decimation.  Figure 3.5 shows the resulting 

transform coefficients in a tree- like structure in which the movement along the tree 

relates to the lower frequency (higher scale J) coefficients. 

 

 
Figure 3.5:  Signal x (n ) decomposition at higher scales of J.   
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If the QMF pairs are chosen properly, the decimated DWT as previous ly 

described will produce an orthogonal decomposition of the input signal.  These filter 

pairs possess specific mathematical properties and exhibit symmetry characteristics 

which will be discussed more thoroughly in chapter IV. 

Although the DWT filtering operations are linear and time invariant, the 

decimation combined with the filtering by the DWT results in a time-variant system 

(Barsanti, 1996).  A time invariant system implies that shifts in the system input will not 

produce an equivalent shift in the system output.  Actually, a shift of only a few samples 

in a signal’s starting point can completely change the wavelet decomposition coefficients.  

This difficulty complicates the performance of signal detection, feature extraction, and 

classification in the wavelet transform domain (Barsanti, 1996). 

Numerous methods have been proposed to deal with the time-variant nature of the 

discrete wavelet transform.  The first method processes multiple time shifted versions of 

the input and averages the results.  This process is known as “cycle spinning”.   Another 

method, developed in 1992 by G. Beylkin, calculates all possible circulant shifts of the 

input signal using a fast algorithm, and averages the results.  This process has been 

shown to be equivalent to the undecimated DWT, and is a non-orthogonal transformation 

(Barsanti, 1996).  A final method is to seek an optimal shift of the input signal.  In this 

process, the transform becomes shift invariant, and orthogonal, but is signal dependent, 

since the shift is only optimal for the signal under consideration (Barsanti, 1996).  

However, these enhanced signal denoising techniques are beyond the scope of this thesis. 

4. Signal Reconstruction 

 By reversing the quadrature mirror filtering and down sampling operations, the 

original signal can be reconstructed from the wavelet coefficients, ,J kC .  The 

reconstruction of the original signal will be exact only if the QMFs (or wavelets) are 

properly chosen and exhibit some restrictive mathematical properties which are briefly 

discussed in Chapter IV.  Perfect reconstruction filters of this kind exist, and are 

constructed by designing another pair of QMFs that perform the upsampling 

(interpolation) and filtering operations.  These synthesis filters entirely compensate for 

any amplitude, phase, and aliasing distortion of the analyzing filters.  Collectively, the 
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analysis and synthesis filters form a channel QMF bank and, as a result, the two channel 

QMF bank behaves like a linear, time- invariant system. 

C. WAVELET TYPES 

As previously described above, the possibility exists of using several different 

wavelet functions.  Some of the most commonly used wavelets in geophysical 

applications are the Morlet, the Mexican hat, the Haar, the Daubechies, and the Symmlet 

wavelets.  These are only a few of the many possible wavelets that can be used for data 

analysis.  The purpose of this section is to briefly describe these five wavelets since these 

were the wavelets used collectively in both studies.  Further describing other wavelet 

types is not pertinent and beyond the scope of this thesis.  

In Eqn.3.7, the constant cΨ is a function of the wavelet used.  Ultimately, a 

wavelet with a smaller value of cΨ will provide better simultaneous localization in the 

time-frequency plane than a larger value of cΨ .  One question remains:  how small can 

one make the time-bandwidth product of a function?  The smallest time-bandwidth is 

associated with the Gaussian function,
2

2te−−  and is equal to 1/2.  Therefore, the 

uncertainty principle in Eqn. 3.7 can be restated as 

( ) ( ) 1
2t λ ω λΨ∆ ∆ ≥ .              (3.15) 

Also, it is noteworthy to mention that the Gaussian function itself is not a wavelet; 

however, its derivatives make sufficient wavelet basis functions for use in data analysis.   

Both the Morlet and the Mexican hat wavelets are subsets of the Gaussian function and 

are further described below. 

1. Mexican Hat 

The Mexican hat wavelet (Fig 3.6) is the second derivative of the Gaussian 

function and given as (Kumar & Georgiou, 1997, Eqn. 7) 

 

  ( ) ( )
21 24 22

1
3

t
t t eπ

−−Ψ =   −  .                    (3.16) 
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Figure 3.6: The Mexican hat wavelet (From Rao & Bopardikar, 1998). 

 

The Mexican Hat is a real wavelet; therefore its continuous wavelet transform is 

also real.  If the CWT were complex, it would be divided into the real part, { },tCλℜ , and 

the imaginary part, { },tCλℑ , enabling one to extract information about the amplitude, 

,tCλ , and phase, { } { }1
, ,tan t tC Cλ λ

−  ℑ ℜ  .  Since the Mexican Hat wavelet is real, its 

imaginary part is zero and the phase is undefined, leaving only information about the 

amplitude. 

2. Morlet 

The Morlet wavelet is constructed by modulating a sinusoidal function by a 

Gaussian function and is defined as (Kumar & Georgiou, 1997, Eqn. 8) 

  ( )
2

0
1

4 2
ti tt e eωπ

−− −Ψ =    ,                   0 5ω ≥ .            (3.17) 

This wavelet is complex, which makes its continuous wavelet transform is also complex.  

Therefore, the CWT can then be divided into the real part, { },tCλℜ , and the imaginary 

part, { },tCλℑ , enabling one to extract information about the amplitude, ,tCλ , and phase, 

{ } { }1
, ,tan t tC Cλ λ

−  ℑ ℜ  , of the process being analyzed.  It is also not compactly 

supported, meaning that it is a wavelet of infinite duration.  However, as shown in Fig 
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3.7, more than 99% of the total energy of the func tion is contained in the interval 

2.5sect  ≤  .  Therefore, this confinement of energy to a finite interval makes this 

function and the Mexican hat wavelet unique and useful for feature extraction purposes.  

 
   Figure 3.7:   Real-value Morlet wavelet (From Rao & Bopardikar, 1998). 

 

3.  Haar 

The Haar wavelet (Fig 3.8) is a piecewise continuous function defined as (Rao & 

Bopardikar, 1998, Eqn. 1.10) 

( ) 1, 0 1 2t tΨ =   ≤ <                                               (3.18a) 

( ) 1, 1t tΨ = −   1 2 ≤ <                                             (3.18b) 

( ) 0tΨ = , otherwise                                             (3.18c) 
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Figure 3.8: Depiction of the Haar wavelet (From Graps, 1995). 

 

The Haar wavelet is a compact, symmetric function that is conceptually simple, 

fast, and exactly reversible without the edge effects that are a problem with other wavelet 

transforms.   

The Haar wavelet uses a rectangular window to sample a given time series.  The 

first pass over the time series uses a window of two.  The window width is then doubled 

at each step until the window encompasses the entire time series.  Each pass over the time 

series generates a new time series and a set of coefficients.  The new time series is the 

average of the previous time series over the sampling window; therefore, the coefficients 

represent the average change in the sample window. 

In generating each set of averages for the next level and each set of coefficients, 

the Haar transform performs an average and difference on a pair of values.  Then the 

algorithm shifts over by two values and calculates another average and difference on the 

next pair.  Normally, the high frequency coefficient spectrum should reflect all high 

frequency changes.  Since the Haar window is only two elements wide, any change that 

takes place from an even to odd value will not be reflected in the high frequency 

coefficients.  

4.  Daubechies    

 The Daubechies wavelet (Fig 3.9) is not an infinite basis function; unlike the 

Morlet or Mexican Hat wavelet, they have the value of zero everywhere outside a certain 

interval or support commonly referred to as compact support.  Additionally, the 
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Daubechies wavelet is a continuous function that cannot be constructed from analytic 

formulas like the previously mentioned wavelets.  These wavelets are thought to be 

creatures of the computer age and are made using an iterative process. 

Daubechies wavelets are also very asymmetric wavelets; therefore, any filter 

associated with this wavelet will have their energy concentrated near the starting point of 

their support. Thus, the magnitude of its wavelet transform is large at the center of any 

signal variation.   

Unlike the Haar wavelet, the Daubechies wavelet algorithm uses overlapping 

windows so that the high frequency spectrum reflects all changes in the time series.  

Although the Daubechies also shifts by elements of two at each step, the average and 

difference are calculated over four elements so that no high frequency changes are 

missed. 

 
Figure 3.9: Depiction of the Daubechies wavelet (From Chui, 1992). 

 
5.  Symmlets 

The Symmlet wavelet (Fig 3.10) is similar to the Daubechies wavelet in that it is a 

compact, continuous wavelet that cannot be constructed from analytic formulas.  The 

main difference is the Symmlet wavelet is nearly symmetric; thus, any filter associated 

with this wavelet will have their energy not as concentrated near the starting point of their 

support. Thus, the magnitude of its wavelet transform will be larger near the boundaries 

of any signal variation.   
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Figure 3.10: Depiction of the Symmlet wavelet (From Graps, 1995). 
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IV. CHOOSING THE PROPER WAVELET 

Wavelet analysis has been criticized for its seemingly arbitrary choice of the 

wavelet basis function ,λ τΨ .  Consequently, the choice of the transform and of the 

appropriate wavelet is dictated by the goals of the analysis and the kind of information 

the user wants to extract from the signal.  In the end, wavelet selection plays an important 

role in the results obtained by wavelet analysis. 

As previously discussed, in general, the continuous wavelet transform is better 

suited for analyzing purposes because its redundancy allows a clear representation of the 

signal’s characteristics.  The orthogonal discrete wavelet transform or the newly 

developed wavelet packet technique are preferable for compression or modeling purposes 

because they decompose the signal into a minimal number of independent coefficients.  

But, the different categories and various types of the analyzing wavelet provide a host of 

options when analyzing a specific process of interest.  Selecting the most appropriate 

basis function requires a thorough comparison of these options and consideration of 

several factors.  The remainder of this chapter will discuss the process of choosing the 

appropriate wavelet for a given data set. 

A. WAVELET PROPERTIES 

1.  Orthogonal Versus Nonorthogonal Wavelets 

In general, orthogonality is a feature of complex exponential signals of different 

frequency.  In mathematics, two vectors are considered orthogonal if their inner product 

is zero, and therefore, it is customary to think that these vectors are at right angles to one 

another. However, the waveforms have no obvious direction.  Thus, orthogonality simply 

means that their inner product is zero, or 1 2 0x x = . 

The choice between orthogonal and nonorthogonal wavelets is guided by the 

considerations of the role of redundancy.  The use of an orthogonal basis function implies 

the use of the discrete wavelet transform (DWT) while a nonorthogonal basis function 

implies the use of either the discrete or continuous wavelet transform (CWT).   

When the user needs quantitative information about the data set, often the 

orthogonal wavelets provide the best choice.  In orthogonal wavelet analysis, the number 
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of convolutions at each scale is proportional to the width of the wavelet basis func tion at 

that scale (Torrence & Compo, 1998).  Subsequently, this produces a wavelet spectrum 

containing discrete segments of wavelet power.  An orthogonal basis function is useful 

for signal processing as it gives the most compact representation of the signal and allows 

for perfect reconstruction of the original signal.  However, the difficulty in using 

orthogonal wavelet functions in time series analysis is any aperiodic shift in the time 

series produces a different wavelet spectrum. 

Conversely, nonorthogonal wavelet analysis is highly redundant at large scales, 

where the wavelet spectrum at adjacent times is highly correlated (Torrence & Compo, 

1998).  Therefore, in applications such as noise suppression, redundant representation of 

wavelet frames is an appropriate choice.  Nonorthogonal wavelets are useful when 

qualitative or exploratory analysis is required at small increments of scale.  This is merely 

due to their ability to perform analysis at scales that are finer than dyadic increments.  

Thus, nonorthogonal wavelets are useful for time series analysis because any aperiodic 

shift will not produce a different wavelet spectrum.  Therefore, only smooth, continuous 

variations in wavelet amplitude can be expected.  

2.  Real Versus Complex Wavelets 

Generally speaking, real wavelets cover both measurements in the ( ),J k  plane 

and are often used to detect sharp signal transitions.  A real wavelet transform is complete 

and conserves the energy of the signal, as long as the wavelet satisfied the admissibility 

condition, discussed previously in Chapter III.     A real wavelet function returns only a 

single component and can be used to isolate peaks or discontinuities (Torrence & Compo, 

1998).  Therefore, in time series analysis, a real wavelet function captures both the 

positive and negative oscillations as separate peaks in the wavelet power spectrum or 

scalogram.   

On the contrary, a complex wavelet transform expands a signal in terms of 

complementary real and imaginary parts, which allow the separation of the magnitude 

and phase of the data.  Thus, a complex wavelet function will return information about 

both amplitude and phase and is better adapted for capturing oscillatory behavior, which 

is then more easily interpreted.  Recent complex wave let methods are believed to offer a 
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useful combination of properties: perfect reconstruction, greater directional selectivity, 

and a natural multiscale decomposition. 

3.  Smooth Versus Irregular Wavelets 

In time series analysis, the wavelet basis function ,λ τΨ  should reflect the type of 

features present in the prescribed data set.  If the user is primarily interested in wavelet 

power spectra, then the choice of the wavelet basis is not critical, considering one basis 

function will give the same qualitative results as another.   

On the contrary, an irregular or discontinuous wavelet such as the Haar wavelet 

often provides a good and simple choice for time series with sharp variations.  For 

smooth-varying or continuous time series, one would choose a smooth function such as a 

damped cosine.   

4.  Symmetric Versus Antisymmetric Wavelets 

By definition, symmetric wavelets are those basis functions in which 

computations which begin from the right-hand side will yield the same results as those 

which begin from the left.  More importantly, to define symmetric wavelets, the pair of 

filter coefficients used to move to a coarser resolution level will be different from the pair 

used to move to a finer resolution level.  When using a symmetric wavelet, the magnitude 

of the wavelet transform is large at the boundaries of the variation.  Therefore, the user 

cannot emphasize any sharp transitions in a signal and should reserve a symmetric 

wavelet for a continuous signal.    

On the contrary, wavelets that are not perfectly symmetric, or antisymmetric, 

mean that approximations for these functions are ones in which computations beginning 

from the right-hand side will yield different results than those which begin from the left.  

Therefore, when using an antisymmetric wavelet, the magnitude of the wavelet transform 

is large at the center of the variation.  Overall, this shows that the user can emphasize a 

region either of sharp transition or of stationary activity by the appropriate choice of 

wavelet function. 
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B. WAVELET PARAMETERS 

1.  Localization 

When strong localization properties are desired for applications in filtering, the 

choice of the wavelet basis function should be guided by considering the spectral 

properties of the function itself.  In order to localize variations in time or frequency, it 

should be known that the resolution of a wavelet function is determined by the balance 

between the width of the basis in real space and the width in Fourier space.  The width of 

a wavelet function is defined as the e-folding time of the wavelet amplitude (Torrence & 

Compo, 1998).  This e- folding time is chosen so that the wavelet power for a 

discontinuity at the edge drops by a factor of 2e− and ensures that the edge effects are 

negligible beyond this point (Torrence & Compo, 1998). Consequently, a narrow wavelet 

function in time will have good time resolution but poor frequency, while a broad 

wavelet function has poor time resolution aside from good frequency resolution.  

Ultimately, the user must determine what is more important to resolve based on the 

prescribed goal of their study and choose a basis accordingly.   

2.  Scales 

Once a wavelet basis function is chosen, choosing a set of scales, λ and a, to use 

in the wavelet transform Eqns. 3.1 and 3.9 is an essential part of the analysis.  For the 

continuous wavelet transform (or nonorthogonal wavelet), the user can utilize an arbitrary 

set of scales to build a more complete picture of their data set.  In the case of the discrete 

wavelet transform, the user is limited to a discrete set of scales as discussed previously in 

chapter III and by Farge (1992).   

Additionally, for a discrete-time signal, ( )x n , the scaling operation by an 

arbitrary factor is not well-defined, making it difficult to obtain an unambiguous 

interpretation of scaling in the discrete-time domain.  Upsampling, interpolation, 

downsampling, and fractional sampling rate alteration can have scaling interpretation, but 

cannot handle all possible scaling factors.  Therefore, Rao & Bopardikar (1998) presented 

a different approach to discrete-time scaling that can handle continuous scaling factors.  

Because the scaling operations in continuous time are well defined, their approach 

defined discrete-time scaling operations in a way that effectively converts ( )x n  into a 
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continuous-time signal through invertible mapping, applying the scaling operation to the 

continuous-time signal, and finally inverse transforming the signal back to the discrete-

time domain.   

Torrence & Compo (1998) showed that the peak amplitude of a wavelet function 

does not necessarily occur at a frequency of 1λ −  and 1a−  for the continuous and discrete 

wavelet function, respectively.  Meyers et al. (1993) developed a method to determine the 

relationship between the equivalent Fourier period and the wavelet scale.  This 

relationship can be derived analytically for a particular wavelet function by substituting a 

cosine wave of a known frequency into Eqns. 3.1 and 3.9, respectively, and computing 

the scale at which the wavelet power spectrum reaches its maximum. 

Therefore, the user should certainly convert from scale to Fourier period prior to 

plotting the wavelet power spectrum; especially since the user is certainly interested in 

equating the wavelet power at a certain time and scale at the equivalent Fourier period.  

C. WAVELET CHOICE 

The purpose of this thesis is to apply wavelets to acoustic signals scattered by 

marine organisms and to marine mammal vocalizations.  Since the Mexican hat wavelet 

and the Morlet wavelet are considered unique and useful for feature extraction purposes, 

these wavelets will be applied to the received backscattered voltage signal ( R
bsv ) as 

acquired in the study by Reeder et al. (2004) to further aid in describing the scattering 

characteristics of fish.  Both wavelets are non-orthogonal, symmetric continuous wavelets 

and were chosen to find variations in R
bsv  in order to determine the absolute target strength 

as a function of angle.    

In addition, the Daubechies and Symmlet wavelets will be applied to the same 

signal ( R
bsv )  for the purpose of correlating the time between the multiple arrivals of a high 

frequency chirp to the spatial separation of the scattering features of the fish.  Both 

wavelets are orthogonal, anti-symmetric discrete wavelets and were chosen to give the 

most compact representation of the signal and to emphasize sharp transitions in the 

received backscattered voltage signal ( R
bsv ).     
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In the marine mammal study, the Haar wavelet was applied to several 

vocalizations in order to determine the root mean square (RMS) energy of the signal as a 

function of range from the passive receiver.  This wavelet is a nonorthogonal, symmetric 

discrete wavelet and was chosen to decompose each vocalization to determine its relative 

amplitude as received on four separate hydrophones.    
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V. ALEWIFE STUDY 

A. BACKGROUND 

In ecology, traditional methods of surveying marine organisms such as direct 

sampling with nets furnishes biological data such as abundance, biomass, direct 

measurements of organism size and species identification.  However, these methods 

encounter various problems such as net avoidance, small sampling volumes, and catch 

destruction of delicate specimens.  Acoustically surveying ecologically important 

organisms could avoid these problems, especially in the case of large-scale synoptic 

surveys that require high resolution data.  While acoustic sampling does not directly 

produce biological data like the traditional methods, inference of biological information 

from acoustic scattering by the marine organism requires an understand ing of the process 

by which the organism scatters sound. 

Detailed investigations into the scattering mechanisms of marine organisms are 

required in order to determine and decipher the extent to which the various anatomical 

features contribute to the overall scattering characteristics (Reeder et al., 2004).  For 

example, understanding the scattering mechanisms of fish is challenging because the fish 

anatomy is unmistakably complex which makes the acoustic scattering characteristics of 

the fish equally complex.  Therefore, studies must embody careful, accurate 

measurements of the acoustic scattering and associated modeling to effectively illustrate 

these mechanisms.  Considering the ample number of organisms that live in the ocean, it 

is nearly impossible to study the scattering by all species.  Nevertheless, marine 

organisms generally can be categorized by morphological groups.  For example, fish can 

be grouped by its morphological characteristics, such as size, shape, and the presence or 

absence of swimbladders.   

 In the past, various studies have focused on measurements and modeling of acoustic 

scattering by fish at single frequencies or more precisely, frequencies within a narrow 

band.  Although these have proven to be successful in surveying common fish species, 

the relationships are not predictive or cannot be applied directly to other fish types 

(Reeder et al., 2004). 
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 Additionally, various analytical and numerical acoustic scattering models have been 

developed that are predictive but are limited in regards to frequency range, surface types, 

boundary conditions, eccentricity of shape, and numerical efficiency.  Generally these 

models only encompass the swimbladder as the dominant scatterer while excluding all 

other body parts.  Ignoring other body parts works well for angles of incidence near the 

main lobe of scattering or angles near normal incidence to the surface of the 

swimbladder.  However, as the angles move away from the main lobe of scattering, there 

is a potential for the models to underpredict the scattering where other organs may 

contribute significantly to the echo (Reeder et al., 2004). 

In order to successfully use acoustics in ocean observations, scattering models 

should be accurate for each category of animal.  In addition, these models require testing 

and refinement through accurate, extensive measurements of scattering from fish as well 

as reliable algorithms for numerical implementation of the models.  More importantly, 

advanced scattering models must include shapes that closely resemble the dominant 

scattering features within the fish, which require high resolution morphological 

measurements of the fish to be made.  Finally, the most important requirement is that the 

acoustic scattering measurements are conducted over a wide range of frequencies, 

preferably with continuous coverage over the frequency band. 

Despite the need for broad spectral coverage, the majority of acoustic 

measurements on fish are in terms of target strengths at single frequencies.   Although 

this information has been cont inually proven to be useful for specific applications, such 

as fishery population estimates, traditional target strength measurements lack spectral 

coverage for rigorous model development (Reeder et al., 2004).  More specifically, 

narrow-band measurements of fish are limited to separate frequencies.  This restricts the 

ability to measure frequency-dependent scattering mechanisms by the use of multiple 

discrete frequencies.  

Considering an animal’s scattering properties vary considerably with the 

frequency of the transmitted signal, the use of broadband transducers offers continuous 

coverage over a significant range of frequencies.  This will inherently increase the 

amount of information contained in the signal.  Additionally, the broadband signals have 

high temporal resolution which can be recognized through the use of an impulse signal or 
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pulse compression of a longer signal.  Therefore, with high temporal resolution, 

scattering features can possibly be resolved in time and identified.   

In spite of the cons iderable advantages of broadband signals, relatively few 

studies have investigated or exploited the animal’s spectral characteristics.  Reeder et al. 

(2004) addressed the need for broadband acoustic measurements and advanced scattering 

models that incorporated high-resolution morphology.  A portion of this study conducted 

extensive broadband acoustic measurements on live, adult alewife (Alosa 

pseudoharengus) that were tethered while being rotated in 1-deg increments of 

orientation angle over all angles in two planes of rotation (lateral and dorsal/ventral) (Fig 

5.1 ).  

 
Figure 5.1: Schematic representation of the laboratory system used in measuring the 
acoustic backscattering by live, individual alewife as a function of angle orientation and 
frequency (From Reeder et. al., 2004). 

 
 The spectral and time-domain analyses of these measurements identified 

dominant scattering features of the alewife as well as demonstrated the extent to which 

the scattering depends on size, shape, acoustic frequency, and orientation angle.   This 

study also utilized traditional x-rays and advanced techniques involving computerized 

tomography (CT) scans to rapidly and noninvasively image the anatomy of the fish so 

that digitizations of swimbladder shape could be incorporated into two scattering models.  
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These two models were the KRM (Kirchhoff- ray mode) model which used the traditional 

x-rays to image the fish anatomy, and the Fourier matching method (FMM) for 

axisymmetric finite- length bodies, a newly developed scattering formulation which used 

the newly developed PCX process (CT scans) to image the fish anatomy (Fig 5.2 ). This 

high resolution imagery from the PCX process contains much finer detail than the 

traditional x-rays which dramatically aids the determination of the scattering features in 

fish. 

   
Figure 5.2: Phase-contrast x-ray (PCX) of an alewife.  This extremely high-resolution 
imaging technique is sensitive to, and illustrates well, the small-scale anatomical features 
of the alewife such as fins, ribs, striations in muscle tissue, gills, and weakly scattering 
soft tissue (From Reeder et al., 2004). 
   

The remainder of this chapter will briefly discuss the acoustic data acquisition 

from Reeder et al. (2004), the methodology using wavelets to examine the acoustic 

scattered signal characteristics, the results of the proposed methodology and a thorough 

discussion of these results, and recommendations for further research.  

B. ACOUSTIC DATA ACQUISITION 

Reeder et al. (2004) chose alewife for their study because they are readily caught 

and are similar to the commercially and ecologically important fish, the Atlantic herring 

(Clupea harengus), in their body size, shape, and swimbladder construction.  Both fish 

expand and contract their swimbladders primarily by transferring air through a pneumatic 

duct between their esophagus and swimbladder.   

The acoustic backscattering measurements were conducted in a large freshwater 

tank as shown in Fig 5.1.  The experimental setup included the use of a power amplifier, 

signal generator, a pair of transducers, preamplifier, signal generator, a pair of 
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transducers, preamplifier, bandpass filter, digital oscilloscope, and personal computer.  

All data was acquired at a 4-MHz sampling rate by the oscilloscope.  During the 

measurements, the individual fish was secured in an acoustically transparent harness in 

the center of the acoustic beam and rotated (Fig 5.1 insert).  Reeder et al. (2004) noted 

that the fish was alive and well throughout the entire experiment. 

A pair of Reson TC2116 broadband acoustic transducers was mounted 

horizontally in the tank facing the fish in the tethering system.  The center of the 

transducers was attached to a computer-controlled stepper motor which rotated the 

assembly in 1° increments through two full rotations, resulting in individual data sets with 

720 pings.  The two transducers were identical and closely spaced approximating a 

monostatic configuration; one was used as the transmitter and one as the receiver.  

Reeder et al. (2004) explained that using two transducers allows closer scattering ranges, 

minimal effects of transmitter ringing, and ease in calibrating the system. 

Reeder et al. (2004) insonified the fish with a shaped chirp signal in a frequency 

spectrum ranging from 40 to 95 kHz at a constant range of 4.3bsr m=   for a duration of 

600 µsec.  The transmitted signal was shaped to make the composite response of the 

transducer pair approximately uniform over the usable bandwidth.  Additionally, the 

transmitted voltage time series, ( )T
bsv t , and the received time series (the backscattered 

return echo from the fish), ( )R
bsv t , were stored on a personal computer for further analysis.  

Reeder et al. (2004) carefully calibrated the system prior to each set of 

backscattering measurements by mounting the transducers facing each other, separated 

by a range of 4.1calr m=  .  The shaped chirp, transmitted calibration voltage 

signal, ( )T
calv t , and the average of hundreds of received calibration voltages, ( )R

calv t , were 

stored on the computer and used later in calculating the absolute target strength of the 

fish (Fig 5.3). 
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Figure 5.3: Broadband chirp signals of the transmitted calibration voltage signal ( T
calv ) 

(left) and the received calibration voltage signal ( R
calv ) (right) used during the calibration 

process.  The transmitted signal waveform ( T
bsv ) was also used during the scattering 

experiment (From Reeder et al., 2004). 

 

The first step in calculating the absolute target strength requires computing the 

magnitude of the scattering amplitude of the fish, bsf , for each ping given by (Reeder et. 

al., 2004, Eqn. 12)  

2R T
bs cal bs

bs R T
cal bs cal

V V r
f

V V r
= ,                         (5.1) 

where R
bsV , T

bsV , R
calV , and T

calV  are the absolute values of the Fourier transforms of the 

bandpass filtered voltage signals R
bsv , T

bsv , R
calv , and T

calv .   

Due to the large dynamic range of the scattering amplitude, the backscatter is 

often expressed in logarithmic terms as target strength (TS), expressed in units of 

decibels (dB) relative to 1 m and given by (Reeder et. al., 2004, Eqn. 2) 

2

10 1010log 10logbs bsTS f σ= = ,                            (5.2) 

where 
2

bs bsfσ ≡  is the differential backscattering cross section.  Note that bsσ  differs 

from the often-used backscattering cross section, σ  by a factor of 4π ( 4 bsσ πσ= ). 
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C. METHODOLOGY 

The purpose of this portion of the thesis was to apply the wavelet transform to the 

received backscattered voltage signal ( R
bsv ) as acquired in the study by Reeder et al. 

(2004) to further aid in describing the scattering characteristics of the fish.  Since 

broadband signals through the matched filter process provide high temporal resolution 

and, as a result, allows the scattering features of fish to be resolved in time, applying the 

wavelet transform in Eqn. 5.1 instead of the Fourier transform has been considered a 

possible analogous method to the one defined in Reeder et al. (2004).  One immediate 

difference when comparing the previous method and the proposed wavelet method is 

wavelets further resolve these features in time and at the same time in frequency, while 

the Fourier transform method defined in Reeder et al. (2004) resolved only the features in 

frequency.  The objective in this chapter is to test this proposed wavelet method as well 

as display any other spectral characteristics as derived from applying the wavelet 

transform.  The remainder of this section will describe the development of the proposed 

method; the remaining sections of this chapter will discuss the results and the 

recommendations for further research. 

MATLAB version 7.0 is a computational software package distributed by The 

MathWorks, Inc. which contains a wavelet toolbox with numerous built- in functions to 

be used for mathematical and scientific computing.  For this study, the received 

backscattered voltage signals ( R
bsv ) were processed via the built- in continuous and 

discrete wavelet functions in this toolbox.  

1. Absolute Target Strength 

Reeder et al. (2004) discusses partial wave target strength (PWTS) which 

highlights the characteristics of selected portions of the backscattered signal and the 

interactions between the multiple arrivals within the portions which apparently cause the 

interference patterns in the spectral plots (Fig 5.4).  Through pulse-compression 

processing, the individual arrivals from the different parts of the body are resolved, 

resulting in several significant scattering features being extracted from the received 

backscattered signal.    
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Figure 5.4: Normalized compressed pulse output (CPO) of R
bsv , target strength, and the 

PWTS of the alewife at three different orientations (one ping per orientation) in the 
lateral plane.  The target strength (TS) was computed from the whole time series (thin 
lines in the plots on the right) and the PWTS (thick lines in the plots on the right) was 
computed from the thick- lined (time-gated) portions of the time series on the left (From 
Reeder et al., 2004). 

 

As the fish’s orientation changes, the constructive and destructive interferences 

between the multiple arrivals vary according to the separation of the scattering features 

(relative to the transducers) with respect to the wavelength of the sound.  At the angle of 

normal incidence, the multiple arrivals are in phase and add coherently, resulting in a 

relatively flat response over the band (Fig 5.4, top right).  As the angle orientation moves 

away from normal incidence, the arrivals add less coherently, causing the individual 

waves to add destructively at certain frequencies.  The result is a series of peaks and nulls 

in the target strength over the frequency band (Fig 5.4, bottom right). 

If the multiple arrivals are analyzed separately, the interference mechanism can be 

further explained (Fig 5.5). 
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Figure 5.5: Normalized CPO of R
bsv , target strength, and PWTS for the alewife in the 

lateral plane at the same oblique angle of orientation, but representing processing of 
different segments of the CPO.  The top pair of plots is the same as the bottom pair in Fig 
5.10 for reference, while the lower two rows illustrates the characteristics of the separate 
arrivals (From Reeder et al, 2004). 

 

Reeder et al. (2004) demonstrated that the PWTS of the individual first and 

second major arrivals at oblique angles exhibit frequency responses that were smooth and  

relatively slowly varying compared with that of a combination of the two arrivals.  This 

further illustrated the hypothesis that these resolved echoes were due to multiple singular 

scattering features which make significant contributions to the overall received scattered 

signal.   

In an attempt to further illustrate the above hypothesis, two different continuous 

wavelet transform (CWTs) were applied to each signal, R
bsv , to further extract scattering 

features of the fish: the Morlet wavelet and the Mexican hat wavelet.   The CWT has 

problems at the beginning and end of the time series due to edge effects.  This can create 

wrap around effects which will misrepresent the wavelet power spectrum associated with 
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a given signal.  Torrence and Compo (1998) mention that it is useful to a pad a signal 

with zeroes to avoid such effects as well as pad up to a power of two as this makes the 

transform go faster.  Therefore, each received backscattered signal ( R
bsv ) containing 6000 

points was first padded with zeroes up to 8192 ( 132 ) points.  In addition, the transmitted 

signal ( T
bsv ), the transmitted calibrated signal ( T

calv ), and the received calibrated signal 

( R
calv ) were padded with zeroes for the same reason up to 8192 points. 

The result of applying these CWTs to a given time series in MATLAB is the 

calculated amplitude of the wavelet coefficient at each corresponding scale and time.  

Torrence and Compo (1998) define the wavelet power spectrum as the coefficient 

amplitude squared, or 
2

,Cλ τ . Thus, these amplitudes can then be represented in a 

scalogram shown later in this chapter to display the wavelet power spectrum at the 

corresponding scale and time.   

Mathematically, the calculated coefficient amplitudes form a matrix in which the 

number of columns is associated with the number of points in time in the signal and the 

number of rows is associated with the prescribed number of scales.  For example, the 

received backscattered signal ( R
bsv ) with 8192 points analyzed over 100 scales would 

result in a 100 8192×  matrix.      To produce an analogous wavelet method to the Fourier 

method described in Reeder et al. (2004), the absolute value of the coefficient amplitudes 

in each row were summed up and divided by the number of points in the original signal 

(6000) to produce the normalized backscattered energy amplitude at that scale.  Overall, 

this was done for every row and, as a result, produced the normalized backscattered 

energy spectrum, R
bsV , over all scales.  This process was done for the received 

backscattered signal at every angle (1-720). 

In order to calculate the scattering amplitude in Eqn. 5.1, the same process as 

described for the received backscattered signal ( R
bsv ) was also done for the transmitted 

signal ( T
bsv ) resulting in the normalized energy spectrum, T

bsV ; the transmitted calibrated 

signal ( T
calv ) resulting in the normalized energy spectrum, T

calV ; and the received 
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calibrated signal ( R
calv ) resulting in the normalized energy spectrum, R

calV .  Therefore, the 

magnitude of the scattering amplitude of the fish was expressed in terms of a wavelet-

based absolute target strength analogous to the Fourier-based target strength using Eqn. 

5.2 as a function of angle. 

2. Multi-level Decomposition 

Reeder et al. (2004) demonstrated that the separation in time of the arrivals from 

the individual scattering features in the fish as it is rotated in the acoustic beam correlates 

to the physical separation of the anatomical features in the fish. The separation of the 

largest peaks of the normalized compressed pulse output (CPO) correlates with the 

physical separation between the skull and swimbladder of the alewife.  Using the 

equation (Reeder et al., 2004) 

( ) ( )/ 2cosseparation timedelay c β=  ∗ ,                                (5.3) 

where β  is the angle of orientation relative to the transducer beam, and c is the speed of 

sound in water, the spatial separation between the scattering features of the fish can be 

determined. 

At a tail-on orientation, the scattering features nearest the tail scatter the incident 

wave first followed by scattering from other features as the incident wave travels from 

tail to head.  As the orientation moves towards normal incidence, the time separation 

between the partial waves decreases as the physical separation of the scattering features 

along the line of the transducers decreases.  As the orientation moves away from normal 

incidence, the time separation increases again.  Reeder et al. (2004) also illustrated that 

the temporal separation from the contributions of individual scatterers in the fish as a 

function of the orientation can be converted to the spatial separation along the length-

wise axis of the fish.   

Recall that a signal decomposed by a given discrete wavelet results in the low 

frequency component of the signal (approximations) and the high frequency component 

of the signal (details).  For many signals, the low-frequency content is the most important 

part.  By further decomposing the low frequency component, the signal will contain less 

noise than the original signal and will further enhance the details of the signal.   
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Anticipating further demonstration of the time-spatial separation correlation at 

each angle, the received backscattered signal ( R
bsv ) was decomposed separately with two 

discrete wavelet transforms: the Daubechies wavelet and the Symmlet wavelet.  Based on 

the size of received backscattered signal ( 8192 1× ) and the type of wavelet used to 

decompose the signal, the maximum decomposition level can be determined via a built- in 

function in the wavelet toolbox.  For both wavelets, the maximum decomposition level 

for the signal, R
bsv , is 9J = .  At this level, the signal was flattened and there were no 

distinct features.  Therefore, the received backscattered signal ( R
bsv ) was only decomposed 

to 8J =  levels with both wavelets for further scattering feature analysis.  

D. RESULTS 

1. Scalograms 

The scalograms in Fig 5.6 and 5.7 depict the wavelet power spectrum of R
bsv   for 

the normal incidence angle using the Morlet wavelet and the Mexican hat wavelet, 

respectively.   

                 

Figure 5.6: The scalogram of the received backscattered signal ( R
bsv ) at the normal 

incidence angle using the Morlet wavelet.  The colorbar (right) corresponds to the 
minimum and maximum coefficient amplitudes.  Scales are displayed inversely (y-axis) 
to correspond with the frequency band, 40-95 kHz, from Reeder et al. (2004). 
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Figure 5.7:  The scalogram of the received backscattered signal ( R

bsv ) at the normal 
incidence angle using the Mexican hat wavelet.  The colorbar (right) corresponds to the 
minimum and maximum coefficient amplitudes.  Scales are displayed inversely (y-axis) 
to correspond with the frequency band, 40-95 kHz, from Reeder et al. (2004). 

 

One difference between Fig 5.6 and 5.7 is the number of scales representing the 

frequency band of the received backscattered signal; Fig 5.6 ranges from 30 to 80 scales 

while Fig 5.7 ranges from 10 to 25 scales, both corresponding to a frequency range of 40 

to 100 kHz.  These frequencies in which the scales correspond to are known as pseudo-

frequencies.  The idea is to associate a purely periodic signal of frequency with the given 

wavelet (in this case, the Morlet and Mexican Hat).  These pseudo-frequencies are 

determined by the relationship (The Math Works, Inc., 2004) 

 
cF

Fλ λ
=

⋅ ∆
,                                                     (5.4) 

 

where λ is a scale, ∆ is the sampling period, Fλ  is the pseudo-frequency corresponding to 

the scale λ in Hz, and cF  is the center frequency of the given wavelet in Hz.  For the 

Morlet wavelet, the center frequency is 0.8125 Hz; for the Mexican hat wavelet, the 

center frequency is 0.25 Hz.  The center frequency, cF ,  is the frequency which optimizes 

the wavelet transform of the given wavelet.  Therefore, the scalograms of the received 

backscattered signal are plotted with the associated wavelet approximation of the signal 
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based on the center frequency of the given wavelet.  Thus, the scalogram is considered a 

center-based approximation of the wavelet transformed signal. 

 Another difference of Fig 5.6 and 5.7 is the range of coefficient amplitudes in 

their corresponding colorbars.  Fig 5.6 has coefficient amplitudes ranging from 0 to 21 

while Fig 5.7 has smaller coefficient amplitudes ranging from 0 to 15.  Recall from Eqn. 

3.1 and 3.2 that the coefficient amplitude depends on the given wavelet; therefore, this 

difference in amplitude is a result of using two different wavelets on the received 

backscattered signal. 

 Finally, Fig 5.6 and 5.7 depict the received backscattered signal differently.  Fig 

5.6 shows a clearer depiction of the wavelet power spectrum for R
bsv  than Fig 5.7; 

therefore, it seems easier to approximate the scale and time of the maximum or larger 

coefficient amplitudes for R
bsv  with the Morlet wavelet than the Mexican hat wavelet. 

Similarly, the scalograms (Fig 5.8 and 5.9) depict the wavelet power spectrum of 
R
bsv   for the near normal incidence angle using the Morlet wavelet and the Mexican hat 

wavelet, respectively. 

           

Figure 5.8: The scalogram of the received backscattered signal ( R
bsv ) at the near 

normal incidence angle using the Morlet wavelet.  The colorbar (right) corresponds to the 
minimum and maximum coefficient amplitudes.  Scales are displayed inversely (y-axis) 
to correspond with the frequency band, 40-95 kHz, from Reeder et al. (2004).  
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Figure 5.9: The scalogram of the received backscattered signal ( R

bsv ) at the near 
normal incidence angle using the Mexican hat wavelet.  The colorbar (right) corresponds 
to the minimum and maximum coefficient amplitudes.  Scales are displayed inversely (y-
axis) to correspond with the frequency band, 40-95 kHz, from Reeder et al. (2004). 
 

The differences between Fig 5.8 and 5.9 are the same as those for the differences 

between Fig 5.6 and 5.7.  However, the near normal incidence angle wavelet power 

spectrum in Fig 5.8 and 5.9 differs from the normal incidence angle wavelet power 

spectrum in Fig 5.6 and 5.7.  The coefficient amplitudes are much less for the near 

normal incidence angle than the coefficient amplitudes of the normal incidence angle.  

This reduction in signal intensity between the scalogram for the normal and near normal 

incidence is consistent with the transducers moving away from the main lobe of 

scattering. 

Similarly, the scalograms (Fig 5.10 and 5.11) depict the wavelet power spectrum 

of R
bsv   for the oblique incidence angle using the Morlet wavelet and the Mexican hat 

wavelet, respectively. 
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Figure 5.10: The scalogram of the received backscattered signal ( R
bsv ) at the oblique 

incidence angle using the Morlet wavelet.  The colorbar (right) corresponds to the 
minimum and maximum coefficient amplitudes.  Scales are displayed inversely (y-axis) 
to correspond with the frequency band, 40-95 kHz, from Reeder et al. (2004). 

 

 
Figure 5.11: The scalogram of the received backscattered signal ( R

bsv ) at the oblique 
incidence angle using the Mexican hat wavelet.  The colorbar (right) corresponds to the 
minimum and maximum coefficient amplitudes.  Scales are displayed inversely (y-axis) 
to correspond with the frequency band, 40-95 kHz, from Reeder et al. (2004). 

 

The differences between Fig 5.10 and 5.11 are the same as those for the 

differences between Fig 5.6 and 5.7 and Fig 5.8 and 5.9, respectively.  However, the 

oblique incidence angle wavelet power spectrum in Fig 5.10 and 5.11 slightly differs 
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from the near normal incidence angle wavelet power spectrum in Fig 5.8 and 5.9.  

Overall, the coefficient amplitudes are slightly less for the oblique incidence angle than 

the coefficient amplitudes of the near normal incidence angle.  This reduction in signal 

intensity between the scalogram for the near normal and oblique incidence is consistent 

with the transducers moving even further away from the main lobe of scattering. 

2. Absolute Target Strength 

The absolute target strength of the received backscattered signal ( R
bsv ) at normal, 

near normal, and oblique angles of incidence as determined by applying the Morlet 

wavelet and the Mexican hat wavelet are shown in Fig 5.12 – 5.17.  Overall, these figures 

demonstrate a high degree of variability in absolute target strength over all scales. 

 

 

Figure 5.12: Target strength of R
bsv  at normal incidence as a function of scales using the 

Morlet wavelet.  Scales are displayed inversely (x-axis) to correspond with the frequency 
band, 40-95 kHz, from Reeder et al. (2004). 
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Figure 5.13: Target strength of R

bsv  at normal incidence as a function of scales using the 
Mexican hat wavelet.  Scales are displayed inversely (x-axis) to correspond with the 
frequency band, 40-95 kHz, from Reeder et al. (2004). 

 
Figure 5.14: Target strength of R

bsv  at near normal incidence as a function of scales 
using the Morlet wavelet.  Scales are displayed inversely (x-axis) to correspond with the 
frequency band, 40-95 kHz, from Reeder et al. (2004). 
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Figure 5.15: Target strength of R

bsv  at near normal incidence as a function of scales 
using the Mexican hat wavelet.  Scales are displayed inversely (x-axis) to correspond 
with the frequency band, 40-95 kHz, from Reeder et al. (2004).  

 

         
Figure 5.16: Target strength of R

bsv  at oblique incidence as a function of scales using the 
Morlet wavelet.  Scales are displayed inve rsely (x-axis) to correspond with the frequency 
band, 40-95 kHz, from Reeder et al. (2004). 
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Figure 5.17: Target strength of R
bsv  at oblique incidence as a function of scales using the 

Mexican hat wavelet.  Scales are displayed inversely (x-axis) to correspond with the 
frequency band, 40-95 kHz, from Reeder et al. (2004). 

 

 Comparing Fig 5.12 to Fig 5.4 (top right) for the normal incidence orientation, the 

range of target strengths over all scales (between -28 and -38 db) is very similar in shape 

and close in value to the range of target strengths (between -25 and -35 db) of the PWTS 

over all frequencies.  Similarly, Fig 5.13 shows the range of target strengths over all 

scales (between -38 and -44 db) somewhat close to the PWTS target strengths, but 

instead linearly shaped.  Also, Fig 5.12 and Fig 5.13 fall within the range of target 

strengths computed for the whole time series (thin lines, Fig 5.4 top right), but are not 

similar in shape. 

 Comparing Fig 5.14 to Fig 5.4 (thick lines, middle right) for the near normal 

incidence orientation, the range of target strengths over all scales (between -38 and -52 

db) is also somewhat similar in shape and close in value to the range of target strengths 

(between -30 and -40 db) of the PWTS over all frequencies.  From scale 80 to 65 which 

is approximately equivalent to frequencies ranging from 40 to 50 kHz, the target strength 

is within the range of -30 to -40 db of the PWTS.  Beyond scale 65, the target strength 

falls out of the PWTS range.  Fig 5.15 shows that the range of target strengths (from -42 
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to -46) over all scales falls just outside the PWTS range.  Similar to Fig 5.13, the range of 

target strengths over all scales is linearly shaped.  Also, Fig 5.14 and Fig 5.15 fall within 

the range of target strengths computed for the whole time series (thin lines, Fig 5.4 

middle right), but are not similar in shape. 

 Comparing 5.16 to Fig 5.4 (bottom right) for the oblique incidence orientation, 

the range of target strengths over all scales (between -37 and -52 db) falls within the 

range of target strengths (between -35 and -70 db) of the PWTS over all frequencies, but 

is not similar in shape.  Similarly, Fig 5.17 shows that the range of target strengths over 

all scales falls within the range of the PWTS target strengths, but is linearly shaped.  

Also, Fig 5.16 and Fig 5.17 fall within the range of target strengths computed for the 

whole time series (thin lines, Fig 5.4 bottom right), but are not similar in shape. 

Additionally, Fig 5.16 looks similar in shape although reversed to the first peak of 

the PWTS for the oblique angle (Fig 5.5 middle right).  The range of target strengths in 

Fig 5.16 is very close to and falls within the range of target strengths for the first peak of 

the PWTS.  The same also holds true for the second peak of the PWTS (Fig 5.5 bottom 

right). 

3. Multi-level Decomposition 

Fig 5.18 - 5.23 shows the received backscattered signal R
bsv  decomposed at 8J =  

levels at normal, near normal, and oblique angles of incidence by the Daubechies and 

Symmlet wavelets.    
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Figure 5.18: Multi- level decomposition for 8J =  levels of the received backscattered 
signal, R

bsv , at normal incidence using the Daubechies wavelet.  The plots on the left are 
the low frequency content of the signal while the plots on the right are the high frequency 
content. 
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Figure 5.19: Multi- level decomposition for 8J =  levels of the received backscattered 
signal, R

bsv , at normal incidence using the Symmlet wavelet.  The plots on the left are the 
low frequency content of the signal while the plots on the right are the high frequency 
content. 
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Figure 5.20: Multi- level decomposition for 8J =  levels of the received backscattered 
signal, R

bsv , at near normal incidence using the Daubechies wavelet.  The plots on the left 
are the low frequency content of the signal while the plots on the right are the high 
frequency content. 
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Figure 5.21: Multi- level decomposition for 8J =  levels of the received backscattered 
signal, R

bsv , at near normal incidence using the Symmlet wavelet.  The plots on the left are 
the low frequency content of the signal while the plots on the right are the high frequency 
content. 
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Figure 5.22: Multi- level decomposition for 8J =  levels of the received backscattered 
signal, R

bsv , at oblique incidence using the Daubechies wavelet.  The plots on the left are 
the low frequency content of the signal while the plots on the right are the high frequency 
content. 
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Figure 5.23: Multi- level decomposition for 8J =  levels of the received backscattered 
signal, R

bsv , at oblique incidence using the Symmlet wavelet.  The plots on the left are the 
low frequency content of the signal while the plots on the right are the high frequency 
content. 
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At levels 1J =  and 2J =  in all figures (right) and at level 3J =   in Fig 5.20-5.23 

(right), the two spikes at 0.8 msec and 1.48 msec appear and are associated with the 

beginning and end positions of the zero padding for the signal.  In Fig 5.18 (right) for the 

normal incidence orientation, at level 2J =  two small peaks appear approximately at 

1.13 msec and 1.16 msec with amplitudes less than +/- 0.05.  At level 3J = , the peaks 

become more distinct at the same places in time with amplitudes close to +/- 0.2.  From 

Eqn. 5.3, with 1500 /c m s=  , 0β = ° , and a time delay of 0.03 msec, the spatial 

separation is approximately equal to 2.25 cm.  As the signal is further decomposed, the 

peaks are no longer distinct. 

Similarly, in Fig 5.19 (right), two small peaks appear at approximately at 1.12 

msec and 1.16 msec with amplitudes less than +/- 0.05 at level 2J = .  The peaks also 

become more distinct at 3J =  at the same places in time with similar amplitudes.  From 

Eqn. 5.3, with 1500 /c m s=  , 0β = ° , and a time delay of 0.04 msec, the spatial 

separation is approximately equal to 3 cm.  As the signal is further decomposed, the 

peaks are no longer distinct. 

In Fig 5.20 (right) for the near normal incidence orientation, level 3J =  shows its 

largest peak at approximately 1.1 msec and its next largest peak at 1.2 msec, although 

both peaks are really not substantial compared to the rest of the signal.  However, level 

4J =  resolves these peaks much better, showing them more distinctly at 1.12 msec and 

1.19 msec with amplitudes close to +/- 0.3.  From Eqn. 5.3, with 1500 /c m s=  , 10β = ° , 

and a time delay of 0.07 msec, the spatial separation is approximately equal to 5.33 cm.  

As the signal is further decomposed, the peaks are no longer distinct. 

In Fig 5.21 (right) for the near normal incidence orientation, level 3J =  is very 

similar to that same level in Fig 5.20.  The largest peak is around 1.1 msec and its next 

largest peak is close to 1.25 msec, although the peaks are not substantial compared to the 

rest of the signal.  Level 4J =  resolves these peaks much better, revealing them more 

specifically at 1.1 msec and 1.2 msec with similar amplitudes close to +/- 0.3.  From Eqn. 

5.3, with 1500 /c m s=  , 10β = ° , and a time delay of 0.09 msec, the spatial distance is 
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approximately equal to 6.85 cm.  As the signal is further decomposed, the peaks are no 

longer distinct. 

In Fig 5.22 (right), there are no distinct peaks at level 3J = .  However, at level 

4J = , two distinct peaks appear at approximately 1.14 msec and 1.2 msec with 

amplitudes between 0.3 and 0.4.  From Eqn. 5.3, with 1500 /c m s=  , 30β = ° , and a time 

delay of 0.06 msec, the spatial distance is approximately equal to 5.2 cm.  As the signal is 

further decomposed, the peaks are no longer distinct. 

Similar to Fig 5.22, there are no distinct peaks at level 3J =  in Fig 5.23 (right), 

but there are two distinct peaks at approximately 1.14 msec and 1.22 msec with 

amplitudes between 0.3 and 0.4. From Eqn. 5.3, with 1500 /c m s=  , 30β = ° , and a time 

delay of 0.08 msec, the spatial distance is approximately equal to 6.9 cm.  As the signal is 

further decomposed in Fig 5.23, the peaks are no longer distinct. 

E. DISCUSSION 

1. Scalograms 

The depictions of the received backscattered signal, R
bsv , at the normal, near 

normal, and oblique incidence angles in Fig 5.6-5.11, respectively, show the relative 

intensity as a function of frequency and time.  The scalograms associated with the Morlet 

wavelet have better resolution.  This makes it relatively difficult to determine an exact 

scale and time location of the larger coefficient amplitudes.  Ideally, the preference is a 

more refined scalogram where the larger coefficient amplitudes are not all meshed 

together into one relatively large area of the scalogram.  As previously mentioned, these 

scalograms are center-based approximations of the wavelet transformed signal and give a 

relative approximation of the signal intensity based on the angle of incidence.   

Due to the complexity of these scattered signals, it is recognized that using only 

the built- in functions for the continuous wavelet transforms in MATLAB limits the 

feature extraction capability.  While these scalograms give a prudent first order 

approximation, the respective wavelets do not have a center frequency that optimizes the 

features of the received backscattered signal, R
bsv .  A wavelet that better represents the 
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frequency spectrum of the scattered signal may enhance and reveal the prominent 

features of  R
bsv  at varying angles of incidence. 

2. Absolute Target Strength 

Although the target strengths of the received backscattered signal, R
bsv , over all 

scales at the normal, near normal, and oblique incidence angles in Fig 5.12-5.17, 

respectively, were within the range of target strengths over the frequency band from 

Reeder et al. (2004), the shapes of the plots did not reveal the constructive and 

destructive interferences between the multiple arrivals as the angle moved away from  

normal incidence.  Similar to the issues with the scalogram, the center frequencies of the 

Morlet and Mexican hat wavelets do not seem to optimize or enhance the features of R
bsv  

in terms of overall target strength by depicting a series of peaks and nulls as the angle 

moved away from normal incidence.   

Recall from Fig 5.5 that the two largest peaks of the received backscattered signal 

were separated in time and the target strength was calculated for each peak, commonly 

referred to as the partial wave target strength (PWTS).  Overall, the target strengths as 

determined by the Morlet wavelet are shapelier and are somewhat closer to resembling 

the PWTS found in Reeder et al. (2004).  Since the Mexican hat wavelet is a simpler 

wavelet, it is expected that the absolute target strength results are a flat spectrum (Figs 

5.13, 5.15, and 5.17).     

More specifically, the results at oblique incidence as determined by the Morlet 

wavelet even closer resemble the PWTS found in Reeder et al. (2004).  Apart from the 

others, these results are very encouraging.  If the windowing effects of the Morlet wavelet 

are capable of capturing the PWTS, then wavelets could have substantial operational 

significance on acoustically scattered signals.  The time it took to compute the PWTS 

using match filtering from Reeder et al. (2004) was on the order of hours compared to the 

time it took to compute the PWTS using wavelets which was on the order of minutes.  

Overall, this reduction in computational time could effectively alter the method for 

calculating the PWTS.           

However, the inability of the Morlet and Mexican hat wavelets to enhance and 

reveal the multiple arrivals of the received backscattered signal suggest that these are not 
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the optimal wavelets to use for this type of signal.  The fact that the range of target 

strengths over all scales were within the range of target strengths over the frequency band 

from Reeder et al. (2004) is very encouraging.  To the best of my knowledge and 

research efforts, this is the first attempt at using wavelets to calculate absolute target 

strength for acoustic signals.  Although a more extensive study is required in finding the 

wavelet that can handle this type of signal complexity to further extract multiple arrivals, 

this a good attempt at a first order approximation in determining absolute target strength. 

In attempt to verify that the methodology used in this study is correct, the same 

process was done using the Morlet wavelet for the real part of a standard Gaussian 

function over time given by  

( ) ( )
22

2cos
t

cp t t e
σ

ω
−

=  ,                                             (5.4) 

where cω is the center radial frequency and σ  is the standard deviation.  In 

general, 2c cfω π= , where cf is the center frequency of a given signal; in this example, 

60cf = kHz and 10σ = kHz, and the time ranges from 17 sec 17 sectµ µ−  < <  (Fig 5.24). 

            
Figure 5.24: Depiction of the standard Gaussian function in Eqn. 5.4. 
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Figure 5.25: Scalogram of the standard Gaussian function in Eqn. 5.4. 

 

            
Figure 5.26: Wavelet spectrum ( )P f of the standard Gaussian function in Eqn. 5.4. 
   

 Recall from chapter III that a Morlet wavelet is constructed by modulating a 

sinusoidal function by a Gaussian function; therefore, applying a Morlet wavelet to Eqn. 

5.4 will clearly bringing out the maximum and larger coefficient amplitudes associated 

with the features of the original function (Fig 5.25).  In addition, the wavelet spectrum 

clearly determines the exact scale (or pseudo-frequency) of the maximum signal energy 

(Fig 5.26).  In this example, the maximum signal energy is located at scale 76, or 16 kHz. 

 Therefore, this example shows that the methodology is correct; however, due to 

the complexity of the received backscattered signal in this study, the Morlet and Mexican 
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hat wavelets clearly are not the optimal wavelets to depict multiple arrivals from the 

scattered signal as the angle of orientation moves away from normal incidence.  

3. Multi-level Decomposition 

Reeder et al. (2004) showed that the separation of the largest peaks of the 

normalized compressed pulse output (CPO) correla tes with a physical separation between 

the skull and swimbladder of the alewife of approximately 10 cm (Fig 5.27). 

                           
Figure 5.27: Depiction of the two largest peaks of the normalized compressed pulse 
output (CPO) as correlated to the spatial separation of the skull and swimbladder of the 
alewife used in the experiment (From Reeder et al., 2004). 

 

For the signals decomposed in Figs 5.18-5.23, the spatial separations as 

determined from the time delay of the two largest peaks in each figure are not equal to 

the spatial separation of 10 cm as found in Reeder et al. (2004).  The closest value to that 

found in Reeder et al. (2004) was at the oblique angle using the Symmlet wavelet, a 

spatial separation equal to 6.9 cm.  In fact, comparing all the angles based on which 

wavelet decomposed the signal, the Symmlet wavelet decomposed the signal to reveal a 

time delay that correlated closer to the spatial separation as found in Reeder et al. (2004).  

Also, the spatial separation of the decomposed signal at the near normal and oblique 

angles of incidence are very close in proximity compared to the decomposed signal at 

normal incidence.   

The difference between the spatial separation found in Reeder et al. (2004) and 

the spatial separation found from the wavelet decomposed signal may be a combination 

of numerous factors.  The variability in these results is partly a function of the fish 

moving during the experiment and the signal complexity.  At near normal and oblique 



68 

incidence, the spatial separation ranging between 5-7 cm are very promising results.  The 

10 cm spatial separation from Reeder et al. (2004) was based on the acoustic center of the 

swimbladder.  Therefore, by accouting for the variability as mentioned above, these 

results are acceptable.   

Another important factor is in relation to the wavelets used to decompose these 

signals.   Although the nearly symmetric Symmlet wavelet resolved the time delay of the 

high frequency peaks better to correlate closer to the spatial separation between the skull 

and the swimbladder, the Daubechies and the Symmlet wavelets have difficulty capturing 

the multiple arrivals of the high frequency content of the signal.  Therefore, it is 

recommended that other wavelets are considered for this multi- level decomposition 

process.  

F. FUTURE RESEARCH 

Meyers et al. (1993) mentions that the appropriate choice of ( )tΨ  is dictated by 

the goals of the analysis.  Similarly, if one knows the characteristics of the signal or 

pattern being sought, the wavelet should be chosen to have the same pattern.  While 

choosing wavelets within the wavelet toolbox in MATLAB were considered appropriate 

for the two main parts of this study, the outcome was not exactly analogous to the Fourier 

method as demonstrated in Reeder et al. (2004).   

Meyers et al. (1993) describes a mother wavelet that would be more applicable to 

the type of signal analyzed in this study.  Meyers et al (2003) mentions that if one is 

seeking the short segments of linearly increasing frequency (or “chirps”) like the signal in 

this study, an appropriate mother wavelet would be (Meyers et al., 2003, Eqn. 4) 

( ) 2 22 2ikt ict tt e e e−Ψ = .                                                 (5.5) 

Due to the limitations of the built- in functions in MATLAB on this signal type, 

further research is needed to design a wavelet algorithm that is synonymous with the 

mother wavelet in Eqn. 5.5.  If such an algorithm is generated, it is possible that a 

wavelet analogous method for determining scattering features in fish will exist.  As a 

result of this development, acoustic scattering models such as the Kirchhoff-ray mode 
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(KRM) model and the newly developed Fourier matching method (FMM) could be 

further enhanced as well as creating a separate wavelet model for acoustic scattering.    
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VI. MARINE MAMMAL STUDY 

In the last decade, the U.S. Navy has been recognized and criticized for its 

potentially harmful impact on the environment using high frequency (HF) active sonars 

during anti-submarine warfare (ASW) operations.  Active sonar releases energy into the 

ocean, and there is evidence to suggest that this may have an adverse effect on both the 

physiology and behavioral patterns of marine mammals.  Although the precise scientific 

effects are not entirely clear, the Department of Defense (DOD) has developed a policy 

that any activity which may have a potentially harmful impact on the environment 

requires mitigating measures to reduce any adverse effects.  The DOD is committed to 

taking all reasonable and practical measures to protect the environment and has since 

developed a precautionary principle to mitigate against undue effects on the marine 

environment. 

Similar to the Royal Navy’s policy on avoiding marine mammal disturbances 

while using active sonar, the U.S. Navy developed a guiding principle for their use of 

active sonar which is defined in a simple process: (1) Plan, (2) Look, (3) Listen, and (4) 

Act.  This process underlines awareness which underpins the principle of environmental 

compliance.   

By developing an awareness of emerging responsibilities for marine mammals 

and the actions necessary to minimize potentially damaging effects, the U.S. Navy in 

conjunction with other government agencies has devoted their research efforts to 

developing methods to avoid marine sensitive areas.  Therefore, when U.S. Navy assets 

are planning active sonar operations, any clear evidence of mammal activity in close 

proximity will be available.   All ships, submarines, and aircrafts can essentially avoid 

those areas and can minimize any potentially damaging environmental effects. 

The remainder of this chapter will discuss the acoustic monitoring of several 

Odontocetes with bottom-mounted hydrophones on the Southern California ASW Range 

(SOAR) off the coast of San Clemente Island.  The first section will describe the SOAR 

range, the locations of each hydrophone used to passively monitor the mammals, and the 

six different vocalizations used in this study; the second section will discuss the 
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methodology in determining the approximate position of each mammal and the multi-

level decomposition of the received signals with the Haar wavelet; the third section will 

present and discuss the results of the multi- level decomposition of each signal and its 

correlation to the mammal’s position relative to each hydrophone; and the final section 

will provide recommendations for further research. 

A. BACKGROUND 

Since the early 1930s, San Clemente Island (SCI) has been owned and operated 

by various naval commands.  Currently, the Commander-in-Chief, Naval Forces, Pacific 

(CINCPACFLT) is the major claimant for the island, and the Naval Air Station, North 

Island (NASNI) is responsible for its administration.   

Over a dozen range and operational areas are clustered within a 60-mile radius of 

the island.  San Clemente Island is the southernmost of the eight California channel 

islands which lies 55 nautical miles south of Long Beach and 68 nm west of San Diego 

(Fig 6.1).  The island is approximately 21 miles long and is 4-1/2 miles across at its 

widest point, with its highest elevation of 1,964 feet located at Mount Thirst.   

            
Figure 6.1: Geographic location of San Clemente Island (From Sturgeon, 2002). 

 

The San Clemente Island Range Complex (SCIRC) is the cornerstone of the 

tactical training ranges supporting the Southern California Operations Area (SOCAL).  
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SOCAL supports the largest concentration of naval forces in the world.  The land, air, 

and sea ranges around San Clemente Island provide the U.S. Navy, U.S. Marine Corps, 

and other military services, space and facilities which they use to conduct readiness 

training and test and evaluation activities.  The distance of San Clemente Island from the 

mainland and its complete Navy ownership make the island and its surrounding area ideal 

for fleet training, weapon and electronics system testing, and research and development 

activities.  

The Southern California Offshore Range (SCORE) is a state-of-the-art, multi-

warfare, integrated training facility which provides tactical range training and testing 

services to U.S. Navy units of the Pacific Fleet.  With its forward deployed forces and 

rapid reaction capabilities, the U.S. Navy is at the forefront of that defense. 

Consequently, a high leve l of operational readiness by fleet forces is essential to maintain 

peace in the international arena. Since fleet readiness is a direct function of quality 

training, SCORE was established and designed to provide Fleet operators with this 

essential training.  

Under the command of the Fleet Area Control and Surveillance Facility, San 

Diego (FACSFACSD), SCORE conducts a multitude of operations including multi-

warfare and battle group evolutions, on and around San Clemente Island (SCI).  SCORE 

consists of several sub-range components: the Southern California Anti-Submarine 

Warfare Range (SOAR), the Electronic Warfare Range (EWR) which includes the Range 

Electronic Warfare Simulator (REWS) and a variety of multi-axis emitters and jammers, 

two MINEX Training Ranges (MTR), a training minefield (Kingfisher) and the Shore 

Bombardment Area (SHOBA).  

The Southern California Anti-Submarine Warfare Range (SOAR) conducts anti-

submarine warfare (ASW) training by utilizing a mix of air/surface tracking systems and 

underwater tracking with highly sophisticated hydrophone arrays. The ASW range is 

comprised of seven sub-areas and encompasses approximately 670 square miles of 3-D 

underwater tracking area, located 68 nautical miles off the coast of San Diego. The range 

routinely supports air, surface, and subsurface unit level torpedo firing exercises as well 
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as inner and middle zone battle group training, supporting the vast majority of Pacific 

Fleet Undersea Warfare (USW) training exercises.  

B. METHODOLOGY 

In this study, the hydrophones on the SOAR were used to monitor several marine 

mammal vocalizations (Fig 6.2, highlighted area).  In August 2004, six different 

vocalizations were received on four separate hydrophones: H70 (32.806° N, -118.643° E), 

H71 (32.785° N, -118.681° E), H77 (32.789° N, -118.609° E), and H78 (32.767° N, -

118.639° E) (Fig 6.3).  

  
Figure 6.2: Location of hydrophones on the SOAR relative to SCI. 
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Figure 6.3: Close-up of the numbered hydrophones on the SOAR. 

 

The vocalizations are single channel clips of raw hydrophone data recorded at a 

frequency of 80 kHz.  Each vocalization was process through a Butter filter, a fourth 

order bandpass filter with a frequency band of 5 kHz to 30 Khz.  Each vocalization was 

then displayed in a spectrogram (Fig 6.4-6.9). 

 
Figure 6.4: Spectrogram of Clip 1 received August 12, 2004, on H71 at 0501 GMT. 
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Figure 6.5: Spectrogram of Clip 2 received August 12, 2004, on H71 at 0503 GMT. 

 

 
 

       
Figure 6.6: Spectrogram of Clip 3 received August 12, 2004, on H71 at 0505 GMT.  
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Figure 6.7: Spectrogram of Clip 4 received August 12, 2004, on H71 at 0612 GMT. 
 
 
 
 
 
 
 

    
Figure 6.8: Spectrogram of Clip 5 received August 12, 2004, on H70 at 0613 GMT. 
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Figure 6.9: Spectrogram of Clip 6 received August 12, 2004, on H70 at 0614 GMT. 

 

The objective in this study is to use wavelet multi- level decomposition to 

determine the root-mean square (RMS) energy of each vocalization in comparison to the 

range of each mammal from the respective hydrophones. The following two sections will 

describe the method in calculating the mammal’s position and the multi- level 

decomposition process for each vocalization. 

1. Time Difference of Arrival (TDOA) 

The methodology to find the approximate position of the mammal which will be 

described in the remainder of this section was conducted by the Ocean Acoustics 

Laboratory at the Naval Postgraduate School, Monterey, CA.  Before describing this 

calculative method, it is important to consider two assumptions.  The first assumption is 

the sound speed is constant throughout the entire water column, averaging 1485 m/s.  

Therefore, only a direct propagation path is considered for each vocalization.  The second 

assumption considers all hydrophones and mammals are in the same plane.  Therefore, 

water depth is not taken into consideration in this process.  

A 100 100×  model grid was placed over the SOAR range (Fig 6.2, highlighted 

area) where the distance between each grid point was110 ° , or approximately 94 m.  

Since these vocalizations were received on H70, H71, H77, and H78, the expected time 

of arrival ( et ) of the sound source was determined based on the range and location of the 
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grid point near or between the respective hydrophones.   Since the mean sound speed (c) 

in this area is 1485 m/s and the distance (r) of the grid point can be determined from each 

hydrophone, the expected time of arrival is given by  

e

c
t

r
= .                                                                (6.1) 

Finding the expected time difference of arrival (TDOA) first required finding the 

hydrophone closest to the grid point.  Once et is determined from Eqn 6.1, the time lag 

0et∆ =  for that hydrophone.  The expected TDOA ( et∆ ) for the other hydrophones was 

calculated by subtracting et of each hydrophone and et  of the closest hydrophone.  

Therefore, every grid point had its respective expected TDOA ( et∆ ) with the four 

hydrophones (Fig 6.10). 

 
Figure 6.10: Example of expected TDOA ( et∆ ) calculations for a given grid point. 

 

Finding the observed TDOA for each clip first required finding the hydrophone 

with the strongest signal.  Once determined, 0ot∆ =  for that hydrophone.  The signal at 

the other hydrophones were then individually cross-correlated with the strongest signal 

over a 6 second period which found the time of maximum correlation between the two 

signals.  Therefore, the time lag ( ot∆ ) for the signal at the each of the other hydrophones 

is equal to the time of maximum correlation minus the observed time of arrival ( ot ) of the 

strongest signal. 
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For every grid point, the sum of squares difference was determined to find the 

approximate position of the mammal given by 

4
2

1

( )o e n
n

t t
=

∆ − ∆∑                                                         (6.2)   

where 1n = through 4 corresponds to H70, H71, H77, and H78, respectively.  Note this 

was done for each clip and wherever the least sum of squares difference was located in 

the grid was the position of the mammal associated with that clip. 

2. Multi-level Decomposition 

Anticipating correlating the root mean square energy of the decomposed signal 

with the hydrophone range, each clip was decomposed separately with the Haar wavelet 

transform.  Based on the size of each vocalization ( 240000 1× ), the maximum 

decomposition level for each clip was determined via a built- in function in the wavelet 

toolbox.  For the Haar wavelet, the maximum decomposition level for each vocalization 

is 16J = .  At this level, the signal was flattened and there were no distinct features.  

However, at level 13J = , each clip had several peaks that were representative of the 

energy in the signal.  Therefore, the root mean square (RMS) energy was calculated at 

level 13J =  for each clip as received on all four hydrophones and was compared to the 

mammal’s range from the respective hydrophone. 

C. RESULTS 

Clip 1 and 2 both came from a mammal at the same location: 32.792° N, -118.68° 

E; Clip 3 came from a mammal at 32.788° N, -118.678° E; Clip 4 came from a mammal 

at 32.786° N, -118.676° E; and Clip 5 and 6 came from a mammal at the same location: 

32.762° N, -118.664° E.  Clips 1 through 4 were located in the vicinity of H71 and Clip 5 

and 6 are closest to H78 (Fig 6.11). 
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Figure 6.11: Mammal’s position (clips 1 through 6) relative to the hydrophones. 

 

Fig. 6.12 through 6.17 shows clips 1 through 6, respectively, decomposed through 

16J =  levels.  For clip 1, the closest hydrophone is H71 at 784 m, followed by H70 and 

H78 at 3792.5 m and 4735 m, respectively, and finally H77 at 6645.2 m.  The RMS 

energy of clip 1 associated with these hydrophones is 15.08, 12.86, 11.4, and 11.41, 

respectively. 

Similarly, for clip 2, the closest hydrophone is H71 at 784 m, followed by H70 

and H78 at 3792.5 m and 4735 m, respectively, and finally H77 at 6645.2 m.  The RMS 

energy of clip 2 associated with these hydrophones is 15.08, 19.7, 11.4, and 11.41, 

respectively. 

For clip 3, the closest hydrophone is H71 at 436 m, followed by H70 and H78 at 

3835 m and 4330 m, respectively, and finally H77 at 6451 m.  The RMS energy of clip 3 

associated with these hydrophones is 12.3, 13.6, 13.0, and 9.5, respectively. 

For clip 4, the closest hydrophone is H71 at 480 m, followed by H70 and H78 at 

3803 m and 4053 m, respectively, and finally H77 at 6272 m.  The RMS energy of clip 4 

associated with these hydrophones is 9.5, 13.7, 14.5, and 9.6, respectively. 
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For clip 5, the closest hydrophone is H78 at 2403 m, followed by H71 and H70 at 

3011 m and 5272 m, respectively, and finally H77 at 5954 m.  The RMS energy of clip 5 

associated with these hydrophones is 8.7, 11.6, 16.1, and 9.0, respectively. 

For clip 6, the closest hydrophone is H78 at 2403 m, followed by H71 and H70 at 

3011 m and 5272 m, respectively, and finally H77 at 5954 m.  The RMS energy of clip 5 

associated with these hydrophones is 10.4, 10.2, 14.0, and 8.4, respectively. 
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Figure 6.12: Multi- level decomposition for 16J =  levels of clip 1 using the Haar 
wavelet.  The plots on the left are the low frequency content of the signal while the plots 
on the right are the high frequency content. 
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Figure 6.13: Multi- level decomposition for 16J =  levels of clip 2 using the Haar 
wavelet.  The plots on the left are the low frequency content of the signal while the plots 
on the right are the high frequency content. 
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Figure 6.14: Multi- level decomposition for 16J =  levels of clip 3 using the Haar 
wavelet.  The plots on the left are the low frequency content of the signal while the plots 
on the right are the high frequency content. 
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Figure 6.15: Multi- level decomposition for 16J =  levels of clip 4 using the Haar 
wavelet.  The plots on the left are the low frequency content of the signal while the plots 
on the right are the high frequency content. 



87 

 
 

Figure 6.16: Multi- level decomposition for 16J =  levels of clip 5 using the Haar 
wavelet.  The plots on the left are the low frequency content of the signal while the plots 
on the right are the high frequency content. 
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Figure 6.17: Multi- level decomposition for 16J =  levels of clip 6 using the Haar 
wavelet.  The plots on the left are the low frequency content of the signal while the plots 
on the right are the high frequency content. 
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D. DISCUSSION 

Assuming a constant source level, the comparison of the root mean square (RMS) 

energy of each wavelet decomposed clip to the mammal’s range from the respective 

hydrophones shows the potential of this process to provide a near real time, first order 

estimate of range.  Fig 6.18 shows the RMS energy of each clip as measured at each 

hydrophone versus the range of the mammal from that corresponding hydrophone.   

 
Figure 6.18: Root mean square (RMS) energy of each clip versus range of the mammal 
from the hydrophone.  The first point is the RMS energy of the vocalization received on 
the closest hydrophone; the second point is the RMS energy received on the next closest 
hydrophone, and so on. 

 

The first point of each clip in Fig 6.18 corresponds to the RMS energy of the 

vocalization received at the closest hydrophone; the second point corresponds to the RMS 

energy of the same vocalization as received at the next closest hydrophone, and so on.  

For example, the closest hydrophone to the mammal associated with clip 1 (blue dashed 

line) is H71, followed by H70, H78, and H77, respectively.  For the other clips, refer to 

the previous section for the order of hydrophones. 

Clip 1 (Fig 6.18, blue dashed line) shows that the maximum RMS energy is 

received at the closest hydrophone.  As the vocalization is received at the other 

hydrophones (in terms of increasing range), the RMS energy decreases.  This directly 
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corresponds to high frequency transmission loss; as range increases, the intensity of the 

high frequency vocalization decreases due to absorption in sea water. 

Clip 2 (Fig 6.18, red dashed line) shows the exact same rela tionship to clip 1 

except for the second point (associated with the second closest hydrophone, H70).  The 

RMS energy is its maximum at H70; the RMS energy of the other three points is exactly 

equal to the RMS energy of the first, third, and fourth points of clip 1 (associated with 

H71, H78, H77, respectively).  Since clip 1 and clip 2 are in the same location and the 

first, third, and fourth points have exactly the same RMS energy, it is considered that 

these vocalizations came from the same mammal.  The reasoning for the maximum RMS 

energy at H70 (clip 2, second point) may be due to a multiple path arrival of the 

vocalization at that hydrophone.  However, the sound speed profile is not known for that 

region and it is difficult to determine if that was in fact the case. 

Clip 3 (Fig 6.18, green dashed line) and clip 4 (Fig 6.18, black dashed line) have 

their maximum RMS energy at the second closest hydrophone, H70, and the third closest 

hydrophone, H78, rspectively.  Clip 3 and clip 4 are both located near H71 (Fig 6.11); 

however, their maximum RMS energy is at H70 and H78, respectively.  Zimmer et al. 

(2005) discusses the three-dimensional beam pattern of a sperm whale, which falls under 

the Odontocetes suborder (Fig 6.19).   

        
Figure 6.19: Beam pattern of three components of clicks recorded from a tagged sperm 
whale (From Zimmer et al., 2005). 
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For sperm whales, Zimmer et al. (2005) observes that the three-dimensional beam 

pattern can be viewed in terms of azimuth and elevation.  It is important to note that the 

three plots in Fig 6.19 use a coordinate as seen by the whale.  The center of each plot 

indicates an azimuth and elevation of 0°.  This corresponds to the direction directly in 

front of the whale.  Negative azimuth values indicate angles to the le ft of the whale, 

positive azimuth to the right.  Similarly, positive elevation indicates angles above the 

horizontal, while negative angles are downward.   

Figure 6.19 shows peak- level bean pattern of the LF component (top), the P0 

pulse (middle), and the P1 pulse (bottom).   Zimmer et al. (2005) confirms a nearly 

omnidirectional LF component with maximum levels ranging from ~ 170-190 dBpeak re: 

1 Paµ  at 1 m, the P0 beam pattern pointing backwards with low directionality at 

maximum levels of ~ 200 dBpeak re: 1 Paµ  at 1 m and the P1 component pointing 

forward with high directionality and a maximum measured level of 210 dBpeak re: 1 Paµ  

at 1 m. 

If the mammals associated with clips 3 and 4 were facing away from H71, the low 

directionality and a lower source level associated with the beam pattern pointing 

backwards could explain why the RMS energy of the vocalization received at H71 was 

less than that received at H70.  Additionally, as the clip 3 is received at the other 

hydrophones (in terms of increasing range), the RMS energy decreases.  This directly 

corresponds to high frequency transmission loss as discussed with clip1; as range 

increases, the intensity of the high frequency vocalization decreases due to absorption in 

sea water.  For clip 4, if the mammal may have been facing more towards H78, the high 

directionality and higher source level associated with the beam pattern pointing forward 

could explain why its RMS energy is slightly higher at H78 than at H70.    

Clip 5 (Fig 6.18, light blue dashed line) and clip 6 (Fig 6.18, pink dashed line) 

show a very different pattern than the other clips.  The maximum RMS energy for both 

clips is at their third closest hydrophone, H70.  Although both clips are closest to H78, 

the mammals associated with these clips could be facing more towards H71 which could 

explain overall the lower RMS energy received at H78.  Additionally, both clips have 

similar peaks associated with their maximum RMS energy.  This could be an indication 
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of multiple arrival paths of the vocalizations to H70 via surface reflection and bottom 

bounce.  Similar to the case with clip 2, the sound speed profile is not known for that 

region and it is difficult to determine if that was in fact the case. 

Additionally, the hydrophones that received these vocalizations have automatic 

gain control (AGC) which means they automatically adjusted the vocalization intensity in 

a specified manner as function of the received signal level.  The AGC levels were 

unknown and not considered for this study which, if known, may have explained our 

results.  Therefore, for future studies, the AGC levels of the hydrophones would have to 

be known and accounted for to make this a systematic process.       

E. FUTURE RESEARCH 

Although this thesis shows potential in providing a near real time, first-order 

estimate of range using wavelets, a more extensive, in-depth study is needed to validate 

this process.  Without knowing the sound speed profiles at the time these vocalizations 

were recorded, the AGC levels of the hydrophones, and the vocalization source levels, 

the results can only suggest the physical possibilities as a function of decomposing each 

vocalization with wavelets.  Additionally, the small sample space limits the 

resourcefulness of this method. Proficiency would require that more vocalizations are 

decomposed and analyzed in a similar manner.   

The three-dimensional beam pattern in Zimmer et al. (2005) demonstrates that 

marine mammal vocalizations should be modeled to determine the manner in which the 

mammal propagates sound.  Additionally, these vocalization models should operate in 

conjunction with sound propagation models.  The sound propagation models will 

acknowledge the appropriate geometric configurations and physical considerations of the 

sound propagation paths in a given area.  Therefore, based on the marine mammal type 

and the sound propagation paths in conjunction with wavelet decomposition, the model 

could provide a near real-time, first-order estimate of range.           
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VII. CONCLUSION 

The wavelet-based techniques as demonstrated in this thesis show the potential in 

providing viable information for these different acoustic data sets.  For the alewife study,    

applying the Mexican Hat and Morlet continuous wavelet transforms to the received 

backscattered signal ( R
bsv ) revealed an approximation of the absolute signal intensity for 

the transducers that were at three different angles of incidence.  More importantly, the 

target strength of R
bsv  estimated over all scales and all angles were within the range of 

target strengths over the frequency band from Reeder et al. (2004), demonstrating that the 

procedure is the correct methodology and a reasonable attempt at a first order 

approximation of absolute target strength using wavelets.  Since the peaks and nulls in 

the target strength associated with the constructive and destructive interference are not 

apparent, it is obvious that the Morlet and Mexican hat wavelets do not optimize or 

enhance the features of the received backscattered signal.  The wavelet based transform 

acts a partial wave target strength which is expected based on the mathematics.  This 

reveals the limitations of the built- in functions in MATLAB on this type of signal and the 

need for a wavelet-based algorithm designed specifically for such complex acoustic 

signals.   

Additionally, the multi- level decomposition of R
bsv  with the Daubechies and 

Symmlet wavelets demonstrated that the time delay of the two largest peaks of the 

normalized compressed output (CPO) closely correlates with a physical separation 

between the skull and swimbladder of the fish.  Although not exact, it shows the 

capability of wavelets to depict the relationship as discovered in Reeder et al. (2004).   

Since MATLAB’s built- in wavelet functions do not incorporate all the mathematically 

available wavelet basis functions, signal processing of R
bsv  with wavelets for the purpose 

of this thesis requires the development of a wavelet-based algorithm as given in Meyers 

et al. (1993). 

For the marine mammal study, the multi- level decomposition of six Odontecetes 

vocalizations with the Haar wavelet revealed the potential of wavelets to provide a near 
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real time, first-order estimate of range from a passive receiver.  By decomposing these 

vocalizations, the physical expectation of high frequency attenuation as a function of 

range was only unmistakably revealed in clip 1.  The three-dimens ional beam pattern 

discovered by Zimmer et al. (2005) could be a plausible explanation of the patterns of the 

RMS energy for the other vocalizations as it is received on each of the four hydrophones.  

Additionally, multiple arrivals via different propagation paths could also explain some of 

the behavior of the RMS energy of these vocalizations as they were received on the 

hydrophones.   

However, a small sample space and a lack of environmental data in regards to the 

sound speed profile in addition to the unknown AGC levels of the hydrophones and the 

constant source level assumption are significant limitations in establishing this method as 

a systematic process.  If a larger number of vocalizations were decomposed with the Haar 

wavelet and analyzed by its RMS energy at each receiver accounting for the limitations 

found in this thesis, it is conceivable that this wavelet-based method could become a 

favorable algorithm for determining the range of a marine mammal from a passive 

receiver.  However, more extensive research is needed to validate this methodology. 

Overall, despite the lack of statistical analysis, this thesis demonstrates that 

wavelets can provide viable information as it pertains to these particular acoustic data 

sets.  Using only built- in functions  in MATLAB limits the data processing ability; 

however, with further research and development, wavelets may provide a promising 

alternate method in processing acoustic scattered signals and marine mammal 

vocalizations.   
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